A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A microstructure-based modeling approach to assess aging-sensitive mechanics of human intervertebral disc. | LitMetric

A microstructure-based modeling approach to assess aging-sensitive mechanics of human intervertebral disc.

Comput Methods Programs Biomed

Ramsay Générale de Santé, Hôpital privé Le Bois, 59000 Lille, France.

Published: March 2021

Background And Objective: The human body soft tissues are hierarchic structures interacting in a complex manner with the surrounding biochemical environment. The loss of soft tissues functionality with age leads to more vulnerability regarding to the external mechanical loadings and increases the risk of injuries. As a main example of the human body soft tissues, the intervertebral disc mechanical response evolution with age is explored. Although the age-dependence of the intervertebral disc microstructure is a well-known feature, no noticeable age effect on the disc stiffness is evidenced in the in-vitro experimental studies of the literature. So, if the disc intrinsic mechanics remains constant, how to explain the correlation of disc degeneration and disc functionality loss with age.

Methods: A microstructure-based modeling approach was developed to assess in-silico the aging-sensitive mechanics of human intervertebral disc. The model considers the relationship between stress/volumetric macro-response and microstructure along with effective age effects acting at the lamellar and multi-lamellar scales. The stress-stretch and transversal responses of the different disc regions were computed for various age groups (13-18, 36, 58, 69 and 82 years old) and their evolution with age was studied.

Results: While matching with in-vitro experimental data, the predicted stiffness was found to increase while passing from adolescent young discs to mature older discs and then to remain almost constant for the rest of life. Important age-related changes in the disc transversal behavior were also predicted affecting the flexibility of the disc, changing its volumetric behavior, and modifying its dimensions.

Conclusion: The developed approach was found able to bring new conclusions about age-dependent mechanical properties including regional dependency. The disc mechanics in terms of rigidity, radial and axial transversal responses were found to alter going from adolescent to middle age where the disc reaches a certain maturity. After reaching maturity, the mechanical properties undergo very slight changes until becoming almost constant with age.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2020.105890DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
16
disc
13
soft tissues
12
microstructure-based modeling
8
modeling approach
8
aging-sensitive mechanics
8
mechanics human
8
human intervertebral
8
human body
8
body soft
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!