Background: The U937 cell line is widely employed as a research tool. It has a complex karyotype. A PICALM-MLLT10 fusion gene formed by the recurrent t(10;11) translocation is present, and the myeloid common deleted region at 20q12 has been lost from its near-triploid karyotype. We carried out a detailed investigation of U937 genome reorganisation including the chromosome 20 rearrangements and other complex rearrangements.

Results: SNP array, G-banding and Multicolour FISH identified chromosome segments resulting from unbalanced and balanced rearrangements. The organisation of the abnormal chromosomes containing these segments was then reconstructed with the strategic use of targeted metaphase FISH. This provided more accurate karyotype information for the evolving karyotype. Rearrangements involving the homologues of a chromosome pair could be differentiated in most instances. Centromere capture was demonstrated in an abnormal chromosome containing parts of chromosomes 16 and 20 which were stabilised by joining to a short section of chromosome containing an 11 centromere. This adds to the growing number of examples of centromere capture, which to date have a high incidence in complex karyotypes where the centromeres of the rearranged chromosomes are identified. There were two normal copies of one chromosome 20 homologue, and complex rearrangement of the other homologue including loss of the 20q12 common deleted region. This confirmed the previously reported loss of heterozygosity of this region in U937, and defined the rearrangements giving rise to this loss.

Conclusions: Centromere capture, stabilising chromosomes pieced together from multiple segments, may be a common feature of complex karyotypes. However, it has only recently been recognised, as this requires deliberate identification of the centromeres of abnormal chromosomes. The approach presented here is invaluable for studying complex reorganised genomes such as those produced by chromothripsis, and provides a more complete picture than can be obtained by microarray, karyotyping or FISH studies alone. One major advantage of SNP arrays for this process is that the two homologues can usually be distinguished when there is more than one rearrangement of a chromosome pair. Tracking the fate of each homologue and of highly repetitive DNA regions such as centromeres helps build a picture of genome evolution. Centromere- and telomere-containing elements are important to deducing chromosome structure. This study confirms and highlights ongoing evolution in cultured cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737353PMC
http://dx.doi.org/10.1186/s13039-020-00517-yDOI Listing

Publication Analysis

Top Keywords

centromere capture
16
common deleted
8
deleted region
8
chromosome
8
abnormal chromosomes
8
chromosome pair
8
complex karyotypes
8
chromosomes
6
complex
6
centromere
5

Similar Publications

The evolution of sex chromosomes can involve recombination suppression sometimes involving structural changes, such as inversions, allowing subsequent rearrangements, including inversions and gene transpositions. In the two major genus Salix clades, Salix and Vetrix, almost all species are dioecious, and sex-linked regions have evolved on chromosome 7 and 15, with either male or female heterogamety. We used chromosome conformation capture (Hi-C) and PacBio HiFi (high-fidelity) reads to assemble chromosome-level, gap-free X and Y chromosomes from both clades, S.

View Article and Find Full Text PDF

Centromere Landscapes Resolved from Hundreds of Human Genomes.

Genomics Proteomics Bioinformatics

December 2024

School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

High-fidelity (HiFi) sequencing has facilitated the assembly and analysis of the most repetitive region of the genome, the centromere. Nevertheless, our current understanding of human centromeres is based on a relatively small number of telomere-to-telomere assemblies, which have not yet captured its full diversity. In this study, we investigated the genomic diversity of human centromere higher order repeats (HORs) via both HiFi reads and haplotype-resolved assemblies from hundreds of samples drawn from ongoing pangenome-sequencing projects and reprocessed them via a novel HOR annotation pipeline, HiCAT-human.

View Article and Find Full Text PDF

Aurora B/AIR-2 regulates sister centromere resolution and CENP-A/HCP-3 organization to prevent merotelic attachments.

J Mol Cell Biol

October 2024

School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.

During cell division, the accurate capture of sister kinetochores that are built on the centromeres of chromosomes by microtubules emanating from opposite spindle poles governs faithful chromosome segregation. To ensure sister chromatids separate correctly, sister centromeres undergo resolution to achieve bi-polar orientation prior to microtubule attachments. Failure of centromere resolution increases the frequency of merotelic attachments, with microtubules from opposite poles attaching to the same sister kinetochore, causing lagging chromosome, aneuploidy, and even cancer progression.

View Article and Find Full Text PDF

Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce.

View Article and Find Full Text PDF

T2T genomes of carrot and Alternaria dauci and their utility for understanding host-pathogen interactions during carrot leaf blight disease.

Plant J

November 2024

National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China.

Article Synopsis
  • Carrots are a widely consumed and nutritious vegetable but suffer from significant yield losses due to a fungal disease called leaf blight, caused by Alternaria dauci.
  • This study reports improved genome assemblies for both carrots and the fungal pathogen, enhancing our understanding of their genetic makeup and the dynamics during infection.
  • The research highlights the interaction between carrot defense mechanisms and the pathogen's strategies, providing insights that can help improve carrot resistance to leaf blight in the future.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!