Vibrational-electronic (vibronic) resonance and its possible role in energy and charge transfer have been experimentally and theoretically investigated in several photosynthetic proteins. Using a dimer modeled on a typical photosynthetic protein, we contrast the description of such excitons provided by an exact basis set description, as opposed to a basis set with reduced vibrational dimensionality. Using a reduced analytical description of the full Hamiltonian, we show that in the presence of vibrational excitation both on electronically excited as well as unexcited sites, constructive interference between such basis states causes vibronic coupling between excitons to become progressively stronger with increasing quanta of vibrational excitation. This effect leads to three distinguishing features of excitons coupled through a vibronic resonance, which are not captured in basis sets that restrict ground state vibrations: (1) the vibronic resonance criterion itself, (2) vibronically assisted perfect delocalization between sites even though purely electronic mixing between the sites is imperfect due to energetic disorder, and (3) the nuclear distortion accompanying vibronic excitons becoming increasingly larger for resonant vibronic coupling involving higher vibrational quanta. In terms of spectroscopically observable limitations of reduced basis set descriptions of vibronic resonance, several differences are seen in absorption and emission spectra but may be obscured on account of overwhelming line broadening. However, we show that several features such as vibronic exciton delocalization and vibrational distortions associated with electronic excitations, which ultimately dictate the excited state wavepacket motions and relaxation processes, are fundamentally not described by basis sets that restrict ground state vibrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0029027 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
The cyano-cyclopentadiene molecule (CN-CH) has attracted significant interest since its detection in the interstellar medium, but the radical (CN-CH) and anionic (CN-CH) forms of cyano-cyclopentadiene have not been studied. The cyano-cyclopentadienyl radical (CN-Cp) has a strong dipole moment, rendering it an ideal system for vibrational and rotational spectroscopy. We report an investigation of the cryogenically cooled cyano-cyclopentadienide anion (CN-Cp) using high-resolution photoelectron imaging, photodetachment spectroscopy, and resonant photoelectron imaging.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Rice University Houston Texas 77005 USA
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China.
The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs).
View Article and Find Full Text PDFNanophotonics
June 2024
Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA.
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Chemistry Beijing Normal University, Beijing 100875, P. R. China.
The photophysics of naphthalimide (NI)-phenothiazine (PTZ) dyads were investigated as electron donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) emitters. Femtosecond transient absorption (fs-TA) spectra show that the photophysical processes in non-polar solvents are in singlet localized state (LE, = 0.8 ps) → Franck-Condon singlet charge separation state (CS, = 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!