The sleep-wake cycle is constituted by three behavioral states: wakefulness (W), non-REM (NREM) and REM sleep. These states are associated with drastic changes in cognitive capacities, mostly determined by the function of the thalamo-cortical system, whose activity can be examined by means of intra-cranial electroencephalogram (iEEG). With the purpose to study in depth the basal activity of the iEEG in adult rats, we analyzed the spectral power and coherence of the iEEG during W and sleep in the paleocortex (olfactory bulb), and in neocortical areas. We also analyzed the laterality of the signals, as well as the influence of the light and dark phases. We found that the iEEG power and coherence of the whole spectrum were largely affected by behavioral states and highly dependent on the cortical areas recorded. We also determined that there are night/day differences in power and coherence during sleep, but not in W. Finally, we observed that, during REM sleep, intra-hemispheric coherence differs between right and left hemispheres. We conclude that the iEEG dynamics are highly dependent on the cortical area and behavioral states. Moreover, there are light/dark phases disparities in the iEEG during sleep, and intra-hemispheric connectivity differs between both hemispheres during REM sleep.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768537 | PMC |
http://dx.doi.org/10.3390/clockssleep2040039 | DOI Listing |
Anal Chem
January 2025
Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.
View Article and Find Full Text PDFJ Clin Neurophysiol
December 2024
Human Brain Mapping Program, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, U.S.A.; and.
Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.
Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.
J Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
With the vigorous development of maritime trade, the frequency band from 100 to 1500 Hz of shallow-sea ambient noise is not only affected by surface wind-induced noise but also the contribution of ship noise. Shallow-sea ambient noise can be described by a linear combination of surface wind-induced noise sources and ship noise sources. By using the correspondence between the real part of the vertical coherence and vertical energy flux, this work establishes a combined noise source model based on vertical coherence.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.
View Article and Find Full Text PDFeNeuro
January 2025
Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Wassenaarseweg 52 2333 AK, Leiden, Netherlands.
The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!