A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. | LitMetric

Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives.

Polymers (Basel)

Institute of Lightweight Structures and Polymer Technology, Chemnitz University of Technology, Reichenhainer Str. 31-33, 09126 Chemnitz, Germany.

Published: December 2020

In this article, polylactic acid-based composites reinforced with 5% of polyethylene, iron, and magnesium powders were prepared by extrusion and compressed under the pressure of about 10 MPa and characterized. These composites were mechanically, thermally, and morphologically evaluated. It was found, compared to the pure polylactic acid (PLA), an improvement in tensile strength (both σ and YS) was obtained for the composite with the iron powder addition, while the magnesium powder slightly improved the ductility of the composite material (from 2.0 to 2.5%). Degradation studies of these composites in the 0.9% saline solution over a period of 180 days revealed changes in the pH of the solution from acidic to alkaline, in all samples. The most varied mass loss was observed in the case of the PLA-5%Mg sample, where initially the sample mass increased (first 30 days) then decreased, and after 120 days, the mass increased again. In the context of degradation phenomenon of the tested materials, it turns out that the most stable is the PLA composite with the Fe addition (PLA-5%Fe), with highest tensile strength and hardness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763237PMC
http://dx.doi.org/10.3390/polym12122939DOI Listing

Publication Analysis

Top Keywords

tensile strength
8
mass increased
8
mechanical thermal
4
thermal properties
4
properties polylactide
4
polylactide pla
4
composites
4
pla composites
4
composites modified
4
modified polyethylene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!