MicroRNAs (miRNA) are small noncoding RNA sequences consisting of about 22 nucleotides that are involved in the regulation of almost 60% of mammalian genes. Presently, there are very limited approaches for the visualization of miRNA locations present inside cells to support the elucidation of pathways and mechanisms behind miRNA function, transport, and biogenesis. MIRLocator, a state-of-the-art tool for the prediction of subcellular localization of miRNAs makes use of a sequence-to-sequence model along with pretrained k-mer embeddings. Existing pretrained k-mer embedding generation methodologies focus on the extraction of semantics of k-mers. However, in RNA sequences, positional information of nucleotides is more important because distinct positions of the four nucleotides define the function of an RNA molecule. Considering the importance of the nucleotide position, we propose a novel approach (kmerPR2vec) which is a fusion of positional information of k-mers with randomly initialized neural k-mer embeddings. In contrast to existing k-mer-based representation, the proposed kmerPR2vec representation is much more rich in terms of semantic information and has more discriminative power. Using novel kmerPR2vec representation, we further present an end-to-end system (MirLocPredictor) which couples the discriminative power of kmerPR2vec with Convolutional Neural Networks (CNNs) for miRNA subcellular location prediction. The effectiveness of the proposed kmerPR2vec approach is evaluated with deep learning-based topologies (i.e., Convolutional Neural Networks (CNN) and Recurrent Neural Network (RNN)) and by using 9 different evaluation measures. Analysis of the results reveals that MirLocPredictor outperform state-of-the-art methods with a significant margin of 18% and 19% in terms of precision and recall.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763197 | PMC |
http://dx.doi.org/10.3390/genes11121475 | DOI Listing |
Plant Mol Biol
January 2025
School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.
View Article and Find Full Text PDFmBio
January 2025
Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay.
Unlabelled: Mycobacteria, including pathogens like , exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in , revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division.
View Article and Find Full Text PDFJ Trop Med
January 2025
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.
Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India.
Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity.
View Article and Find Full Text PDFCell Death Discov
January 2025
Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!