Simultaneous removal of ammonium nitrogen, dissolved chemical oxygen demand and color from sanitary landfill leachate using natural zeolite.

J Hazard Mater

Department of Chemical Engineering, University of Patras, GR 26504, Rion, Patras, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece.

Published: March 2021

In this study, natural zeolite with maximum adsorption capacity of 3.59 mg g was used for the simultaneous removal of ammonium nitrogen (NH-N), dissolved chemical oxygen demand (d-COD) and color from raw sanitary landfill leachate (SLL). Saturation, desorption and regeneration tests of zeolite were performed. Optimum adsorption conditions were found for particle size 0.930 µm, stirring rate of 1.18 m s, zeolite dosage of 133 g L and pH 8. NH-N removal efficiency reached 51.63 ± 0.80% within 2.5 min of contact. NH-N adsorption follows mostly the linear pseudo-second order model, with intra-particle diffusion. NH-N desorption follows the linear pseudo-second order model. Adsorption data fitted to the Temkin Isotherm in linear and nonlinear forms. Saturation tests showed that zeolite can be efficiently used in three successive adsorption cycles. NH-N release from the saturated zeolite was not completely reversible, suggesting that the zeolite may be used as slow ΝΗ-Ν releasing fertilizer and an attractive low cost material for the treatment of SLL. NH-N removal with the regenerated zeolite exceeded 40% of the initial concentration in the fluid within 2.5 min. SEM analysis showed significant changes through saturation and regeneration. XPS revealed that adsorption of ΝΗ-Ν to the zeolite was accompanied by ion exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124679DOI Listing

Publication Analysis

Top Keywords

zeolite
9
simultaneous removal
8
removal ammonium
8
ammonium nitrogen
8
dissolved chemical
8
chemical oxygen
8
oxygen demand
8
sanitary landfill
8
landfill leachate
8
natural zeolite
8

Similar Publications

Mesoporous Nitrogen-Doped Carbon Support from ZIF-8 for Pt Catalysts in Oxygen Reduction Reaction.

Nanomaterials (Basel)

January 2025

Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples.

View Article and Find Full Text PDF

The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.

View Article and Find Full Text PDF

Zeolite Membranes for Gas and Liquid Separation: Synthesis and Applications.

Membranes (Basel)

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

The quest for efficient separation technologies is more critical than ever in our rapidly evolving industrial landscape, where the demand for sustainable and cost-effective solutions is paramount [...

View Article and Find Full Text PDF

Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.

View Article and Find Full Text PDF

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!