Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging.

Spectrochim Acta A Mol Biomol Spectrosc

School of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26, Hexing Road, Harbin 150040, PR China.

Published: March 2021

Carbon quantum dots (CQDs), owing to their characteristic luminescent properties, have become a new favorite in the field of luminescence. They have been widely used in light emitting diode, ion detection, cell-imaging, ect. Herein a facile synthesis method of nitrogen-doped carbon quantum dots (N-CQDs) has been developedviaa one-step hydrothermal of glucose and m-phenylenediamine. The chemical composition, surface functional groups, and crystal structure of so prepared N-CQDs were systematically characterized. The characterizations indicate that nitrogen has been chemically doped in the CQDs and the N-CQDs crystallize in a graphene structure. Photoluminescence (PL) measurements show that the N-CQDs emit strong blue emission under the irradiation of ultraviolet. The emission is excitation-dependent, is resistant to photo bleaching and high ionic strength, and slightly decreases with the increase of temperature. The quantum yield of them is about 17.5%. The PL intensity of N-CQDs quenches linearly with the increase of the concentrations of Fe(0.5-1.0 mM) and CrO(0.3-0.6 mM), which are a kind of excellent fluorescent probe for the detection of Fe and CrO. The quenching mechanism of Fe and CrOis verified to be a static quenching mechanism based on inner filter effect. The N-CQDs are also found to be a good cell-imaging reagent of Hela cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2020.119282DOI Listing

Publication Analysis

Top Keywords

carbon quantum
12
quantum dots
12
quenching mechanism
8
n-cqds
6
hydrothermal synthesis
4
synthesis n-doped
4
n-doped carbon
4
quantum
4
dots application
4
application ion-detection
4

Similar Publications

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Triplet-ground-state nonalternant nanographene with high stability and long spin lifetimes.

Nat Commun

January 2025

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.

High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!