Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethnopharmacological Relevance: In Chinese folk medicine, Ligustrum robustum (Roxb.) Blume has been widely used as a healthy tea beverage for improvement in obesity and lipidemic metabolic disorders.
Aim Of The Study: We aimed to investigate the effect of L. robustum extract (LRE) on metabolic syndrome in high-fat diet (HFD)-fed mice and to explore the underlying role of gut microbiota during the treatment.
Materials And Methods: The ground dried leaves of L. robustum (Roxb.) Blume were extracted with ethanol and then purified by a resin column. The composition of L. robustum extract (LRE) was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). C57BL/6 J mice fed with HFD were treated with LRE for 16 weeks. RT-qPCR and morphological staining were utilized to reveal the impact of LRE on hepatic glucolipid metabolism and gut integrity. The next-generation sequencing of 16 S rDNA was applied for analyzing the gut microbial community of fecal samples.
Results: LRE, mainly composed of ligupurpuroside A and aceteoside, alleviated insulin resistance, improved hepatic metabolism, enhanced intestinal integrity, and suppressed inflammatory responses in HFD-fed mice. Moreover, LRE treatment reshaped the gut microbiota structure by increasing the levels of genera Streptococcus, Lactobacillus, and Mucispirillum and decreasing the populations of Alistipes and Lachnospiraceae NK4A136 group in HFD-fed mice. The alteration of gut microbiota was associated with several metabolic pathways of gut bacteria. Spearman's correlation analysis further confirmed the links between the changed intestinal bacteria and multiple disease indices.
Conclusions: LRE prevented gut microbiota dysbiosis and metabolic disorder in HFD-fed mice, which helps to promote the application in LRE-mediated prevention from metabolic syndrome as a gut microbial regulator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2020.113695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!