Background: Investigation of neuromuscular junction (NMJ) morphology by immunochemistry can provide important insights into the physiological and pathological status of neuromuscular disorders. Sectioning and muscle fiber tearing are commonly required to prepare experimentally accessible samples, while muscles that are flat and thin can be investigated with whole-mount immunohistochemistry for a comprehensive overview of the entire innervation pattern. The diaphragm is important for respiratory function and one of the flat muscles frequently used for studying neuromuscular development as well as neuromuscular pathology. Nevertheless, techniques for reliable whole-mount immunolabeling of adult diaphragms are lacking, mainly due to the poor tissue permeability of labeling reagents. An effective approach for researchers to be able to comprehensively visualize and characterize NMJ defects of the adult diaphragm in mouse models is therefore of clear importance.
New Method: This protocol demonstrates that the diaphragm can be thinned and spread out under even pressure using two Perspex boards for better whole-mount immunostaining.
Results: The expanded mouse diaphragm allows the comprehensive assessment of a number of NMJ phenotypes.
Comparison With Existing Methods: Most peer-reviewed and online protocols can be applied to the embryonic diaphragm but fail to show the entire innervation pattern in the adult diaphragm. Our method provides a convenient approach and present a clear innervation pattern that increases the reliability of the assessment of NMJ phenotypes in the diaphragm.
Conclusions: This simple method for whole-mount immunostaining of the adult diaphragm will allow researchers to perform a detailed analysis of the neuromuscular system in mouse models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2020.109016 | DOI Listing |
Front Neurol
January 2025
Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.
Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.
Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.
J Anat
January 2025
Graduate School of Medicine, Juntendo University, Tokyo, Japan.
The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.
Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.
View Article and Find Full Text PDFScience
January 2025
Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
Intracortical microstimulation (ICMS) of somatosensory cortex evokes tactile sensations whose properties can be systematically manipulated by varying stimulation parameters. However, ICMS currently provides an imperfect sense of touch, limiting manual dexterity and tactile experience. Leveraging our understanding of how tactile features are encoded in the primary somatosensory cortex (S1), we sought to inform individuals with paralysis about local geometry and apparent motion of objects on their skin.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!