Curcumin has a variety of anticancer properties, but low bioavailability prevents its use in chemotherapeutic applications. To address this problem, we tested the efficacy of the synthetic curcumin analog B14 in breast cancer cells and explored the mechanism by which B14 inhibits proliferation and metastasis of breast cancer cells. We used the breast cancer cell line MCF-7, MDA-MB-231 to study the anticancer effects of B14 and assessed cell viability, cell migration and invasion, cell cycle, and apoptosis, in addition, the antitumor effect of B14 in vivo was examined in mice bearing MDA-MB-231 cells. We found that, as the concentration of B14 increased, cell viability decreased in a dose-dependent manner. Compound B14 exerted the best antitumor activity and selectivity for MCF-7 and MDA-M-231 cells (IC = 8.84 μmol/L and 8.33 μmol/L, respectively), while its IC value for MCF-10A breast epithelial cells was 34.96 μmol/L. B14 has been shown to be a multi-targeted drug that alters the expression of cyclin D1, cyclin E1, and cyclin-dependent kinase 2 (CDK2), and ultimately induces G1 phase cell cycle arrest. At the same time, B14 activates the mitochondrial apoptosis pathway in breast cancer cells. Furthermore, B14 was more effective than curcumin in inhibiting cell migration, invasion, and colony formation. In tumor-bearing mice, analog B14 significantly reduced tumor growth and inhibited cell proliferation and angiogenesis. The pharmacokinetic test found that B14 was more stable than curcumin in vivo. Our data reveal the therapeutic potential of the curcumin analog B14 and the underlying mechanisms to fight breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894010 | PMC |
http://dx.doi.org/10.1111/cas.14770 | DOI Listing |
J Immunother
October 2024
Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China.
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.
View Article and Find Full Text PDFClin Neuropharmacol
October 2024
Department of Neurosurgery, Yubei District Hospital of TCM, Chongqing, China.
Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.
View Article and Find Full Text PDFAm J Dermatopathol
December 2024
Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.
Microtubule-stabilizing agents (enfortumab vedotin and brentuximab vedotin) and microtubule-disrupting agents (docetaxel and paclitaxel) are used as anticancer agents but can also induce drug eruptions. Recently, mitotic arrest figures have been reported in various non-neoplastic cells as the histopathologic side effect of these drug eruptions. Therefore, we performed a comparative analysis of drug eruptions associated with these microtubule-targeting agents.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China.
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.
View Article and Find Full Text PDFScience
January 2025
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!