Ovulation is Inhibited by an Environmentally Relevant Phthalate Mixture in Mouse Antral Follicles In Vitro.

Toxicol Sci

Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky.

Published: January 2021

Phthalates are solvents and plasticizers found in consumer products including cosmetics, food/beverage containers, housing materials, etc. Phthalates are known endocrine-disrupting chemicals that can directly target the ovary, potentially causing defects in ovulation and fertility. Women are exposed to multiple different phthalates daily, therefore this study investigated the effects of an environmentally relevant phthalate mixture (PHTmix) on ovulation. Ovulation is initiated by the luteinizing hormone (LH) surge, which induces prostaglandin (PG) production, progesterone (P4)/progesterone receptor (PGR) signaling, and extracellular matrix (ECM) remodeling. We hypothesized that the PHTmix would directly inhibit ovulation by altering the levels of PGs, P4/PGR, and enzymes involved in ECM remodeling. Antral follicles from CD-1 mice were treated with vehicle control alone (dimethylsulfoxide, DMSO), hCG alone (LH analog), and hCG+PHTmix (1-500μg/ml), and samples were collected across the ovulatory period. The PHTmix decreased ovulation rates at all doses tested in a dose-dependent manner when compared to hCG. PG levels were decreased by the PHTmix when compared to hCG, which was potentially mediated by altered levels of PG synthesis (Ptgs2) and transport (Slco2a1) genes. The PHTmix altered P4 and Pgr levels when compared to hCG, leading to decreases in downstream PGR-mediated genes (Edn2, Il6, Adamts1). ECM remodeling was potentially dysregulated by altered levels of ovulatory mediators belonging to the matrix metalloproteases and plasminogen activator families. These data suggest that phthalate exposure inhibits ovulation by altering PG levels, P4/PGR action, and ECM remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454202PMC
http://dx.doi.org/10.1093/toxsci/kfaa170DOI Listing

Publication Analysis

Top Keywords

ecm remodeling
16
compared hcg
12
environmentally relevant
8
relevant phthalate
8
phthalate mixture
8
antral follicles
8
ovulation altering
8
altering levels
8
altered levels
8
ovulation
7

Similar Publications

An extracellular vesicle based hypothesis for the genesis of the polycystic kidney diseases.

Extracell Vesicle

December 2024

The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.

Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).

View Article and Find Full Text PDF

Potential implications of granzyme B in keloids and hypertrophic scars through extracellular matrix remodeling and latent TGF-β activation.

Front Immunol

January 2025

International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.

Keloid scars (KS) and hypertrophic scars (HS) are fibroproliferative wound healing defects characterized by excessive accumulation of extracellular matrix (ECM) in the dermis of affected individuals. Although transforming growth factor (TGF)-β is known to be involved in the formation of KS and HS, the molecular mechanisms responsible for its activation remain unclear. In this study we investigated Granzyme B (GzmB), a serine protease with established roles in fibrosis and scarring through the cleavage of ECM proteins, as a potential new mediator of TGF-β activation in KS and HS.

View Article and Find Full Text PDF

Atgl-dependent adipocyte lipolysis promotes lipodystrophy and restrains fibrogenic responses during skin fibrosis.

J Invest Dermatol

January 2025

Dept. of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA; Dept. of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA. Electronic address:

During skin fibrosis, extracellular matrix (ECM) proteins are overproduced, and resident lipid-filled, mature dermal adipocytes are depleted in both human disease and mouse models. However, the mechanisms by which the reduction in lipid-filled adipocytes occurs during fibrosis are not well understood. Here, we identify that adipocyte lipolysis via the rate limiting enzyme, adipocyte triglyceride lipase (Atgl), is required for loss of adipose tissue during skin fibrosis in mice.

View Article and Find Full Text PDF

Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.

View Article and Find Full Text PDF

Depot-specific acetylation profiles of adipose tissues-therapeutic targets for metabolically unhealthy obesity.

Diabetol Metab Syndr

January 2025

The Centre for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.

Background: Adipose tissue plays a critical role in the development of metabolically unhealthy obesity (MUO), with distinct adipose depots demonstrating functional differences. This study aimed to investigate the unique characteristics of subcutaneous (SA) and visceral adipose tissue (VA) in MUO.

Methods: Paired omental VA and abdominal SA samples were obtained from four male patients with MUO and subjected to Four-Dimensional Data Independent Acquisition (4D-DIA) proteomic and lysine acetylation (Kac) analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!