Brown rot fungi have great potential in biorefinery wood conversion systems because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose degrading system. Their initial wood degradation mechanism is thought to consist of an oxidative radical-based system that acts sequentially with an enzymatic saccharification system, but the complete molecular mechanism of this system has not yet been elucidated. Some studies have shown that wood degradation mechanisms of brown rot fungi have diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown rot species, has broad substrate selectivity and even can degrade some grasses. However, the basis for this broad substrate specificity is poorly understood. In this study, we performed RNA-seq analyses on G. trabeum grown on media containing glucose, cellulose, or Japanese cedar (Cryptomeria japonica) as the sole carbon source. Comparison to the gene expression on glucose, 1,129 genes were upregulated on cellulose and 1,516 genes were upregulated on cedar. Carbohydrate Active enZyme (CAZyme) genes upregulated on cellulose and cedar media by G. trabeum included glycoside hyrolase family 12 (GH12), GH131, carbohydrate esterase family 1 (CE1), auxiliary activities family 3 subfamily 1 (AA3_1), AA3_2, AA3_4 and AA9, which is a newly reported expression pattern for brown rot fungi. The upregulation of both terpene synthase and cytochrome P450 genes on cedar media suggests the potential importance of these gene products in the production of secondary metabolites associated with the chelator-mediated Fenton reaction. These results provide new insights into the inherent wood degradation mechanism of G. trabeum and the diversity of brown rot mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735643PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243984PLOS

Publication Analysis

Top Keywords

brown rot
24
rot fungi
12
wood degradation
12
genes upregulated
12
gloeophyllum trabeum
8
degradation mechanism
8
substrate selectivity
8
broad substrate
8
upregulated cellulose
8
cedar media
8

Similar Publications

First Report of Causing Root Rot of Incense Cedar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.

View Article and Find Full Text PDF

Differences in Behavior During Early Nectarine Infection Among Main spp. Causing Brown Rot.

Phytopathology

January 2025

Centro de Investigaciones Biologicas, Departament of Cellular and Molecular Biology, Ramiro de Maeztu, 9, Madrid, Madrid, Madrid, Spain, 28040.

Brown rot is a disease that affects stone and pome fruit crops worldwide. It is caused by fungal members of the genus , mainly , and . This study presents evidence that, despite having a very similar battery of Cell Wall Degrading Enzymes (CWDEs), the three species behave differently during the early stages of infection, suggesting differences at the regulatory level, which could also explain the differences in host preference among the three species.

View Article and Find Full Text PDF

Tobacco ( L.) is an economically important crop in China. In April 2024, field tobacco (cv.

View Article and Find Full Text PDF

Aralia elata (Miq.) Seem, is an important cash crop in northeastern China. The tender shoots are rich in amino acids, vitamins, and trace elements, and the saponins of leaves and roots have antioxidant and immune-boosting properties.

View Article and Find Full Text PDF

First Report of Causing Rot of Potato in China.

Plant Dis

January 2025

Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences,, Chengdu, China;

Potato ( L.) is the third largest food crop globally following rice and wheat, which is consumed by more than 1 billion people worldwide (FAO 2024). In October 2022, tuber rot of potato (cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!