A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mixed-effects models for censored data with autoregressive errors. | LitMetric

AI Article Synopsis

  • Mixed-effects models that handle censored data are important for analyzing irregular time measurements, particularly when there are detection limits.
  • A new approach using a likelihood-based method is introduced to fit these models while addressing dependencies in error terms through an EM-type algorithm, which helps estimate key parameters and their standard errors.
  • The effectiveness of this method is demonstrated through simulations and a real AIDS case study, and it is implemented in a new R package called ARpLMEC.

Article Abstract

Mixed-effects models, with modifications to accommodate censored observations (LMEC/NLMEC), are routinely used to analyze measurements, collected irregularly over time, which are often subject to some upper and lower detection limits. This paper presents a likelihood-based approach for fitting LMEC/NLMEC models with autoregressive of order dependence of the error term. An EM-type algorithm is developed for computing the maximum likelihood estimates, obtaining as a byproduct the standard errors of the fixed effects and the likelihood value. Moreover, the constraints on the parameter space that arise from the stationarity conditions for the autoregressive parameters in the EM algorithm are handled by a reparameterization scheme, as discussed in Lin and Lee (2007). To examine the performance of the proposed method, we present some simulation studies and analyze a real AIDS case study. The proposed algorithm and methods are implemented in the new R package ARpLMEC.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10543406.2020.1852246DOI Listing

Publication Analysis

Top Keywords

mixed-effects models
8
models censored
4
censored data
4
data autoregressive
4
autoregressive errors
4
errors mixed-effects
4
models modifications
4
modifications accommodate
4
accommodate censored
4
censored observations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!