Study Design: In silico finite element study.
Objective: The aim of this study was to evaluate effects of six construct factors on rod and screw strain at the lumbosacral junction in an in silico pedicle subtraction osteotomy (PSO) model: traditional inline and alternative Ames-Deviren-Gupta (ADG) multi-rod techniques, number of accessory rods (three-rod vs. four-rod), rod material (cobalt-chrome [CoCr] or stainless steel [SS] vs. titanium [Ti]), rod diameter (5.5 vs. 6.35 mm), and use of cross-connectors (CC), or anterior column support (ACS).
Summary Of Background Data: Implant failure and pseudoarthrosis at the lumbosacral junction following PSO are frequently reported. Clinicians may modulate reconstructs with multiple rods, rod position, rod material, and diameter, and with CC or ACS to reduce mechanical demand. An evaluation of these features' effects on rod and screw strains is lacking.
Methods: A finite element model (T12-S1) with intervertebral discs and ligaments was created and validated with cadaveric motion data. Lumbosacral rod and screw strain data were collected for 96 constructs across all six construct factors and normalized to the Ti 2-Rod control.
Results: The inline technique resulted in 12.5% to 51.3% more rod strain and decreased screw strain (88.3% to 95%) compared to ADG at the lumbosacral junction. An asymmetrical strain distribution was observed in the three-rod inline technique in comparison to four-rod, which was more evenly distributed. Regardless of construct features, rod strain was significantly decreased by rod material (CoCr > SS > Ti), and increasing rod diameter from 5.5 mm to 6.35 mm reduced strain by 9.9% to 22.1%. ACS resulted in significant reduction of rod (37.8%-59.8%) and screw strains (23.2%-65.8%).
Conclusion: Increasing rod diameter, using CoCr rods, and ACS were the most effective methods in reducing rod strain at the lumbosacral junction. The inline technique decreased screw strain and increased rod strain compared to ADG.
Level Of Evidence: N/A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0000000000003720 | DOI Listing |
Vet Comp Orthop Traumatol
January 2025
School of Engineering, University of Guelph, Guelph, Ontario, Canada.
Objective: To determine the effect of locking head inserts (LHI) on plate strain, stiffness, and deformation when applied to a 3.5-mm broad locking compression plate (LCP) in an open fracture-gap model.
Study Design: Six, 13-hole, 3.
J Am Chem Soc
January 2025
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Some one-dimensional (1D) crystals containing a screw dislocation along their longer axis exhibit a helical twist due to lattice strain. These chiral structures have been thoroughly investigated by using transmission electron microscopy. However, whether two-dimensional (2D) crystals with a spiral surface pattern, presumably containing a screw dislocation, are structurally chiral remains unclear because their internal structures are not visible.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedic, South China Hospital of Shenzhen University, Shenzhen, 518116, Guangdong, China.
Before patients begin out-of-bed exercises following internal fixation surgery for acetabular fractures, turning over in bed serves as a crucial intervention to mitigate complications associated with prolonged bed rest. However, data on the safety of this maneuver post-surgery are limited, and the biomechanical evidence remains unclear. This study aims to introduce a novel loading protocol designed to preliminarily simulate the action of turning over in bed and to compare the biomechanical properties of two fixation methods for acetabular fractures under this new protocol.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
Université de Lorraine, CNRS, Arts et Métiers, LEM3, Metz 57070, France.
Characterizing threading dislocations (TDs) in gallium nitride (GaN) semiconductors is crucial for ensuring the reliability of semiconductor devices. The current research addresses this issue by combining two techniques using a scanning electron microscope, namely electron channeling contrast imaging (ECCI) and high-resolution electron backscattered diffraction (HR-EBSD). It is a comparative study of these techniques to underscore how they perform in the evaluation of TD densities in GaN epitaxial layers.
View Article and Find Full Text PDFJOR Spine
March 2025
Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.
Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!