Whilst a range of strategies have been proposed for enhancing crop productivity, many recent studies have focused primarily on enhancing leaf photosynthesis under current atmospheric CO2 concentrations. Given that the atmospheric CO2 concentration is likely to increase significantly in the foreseeable future, an alternative/complementary strategy might be to exploit any variability in the enhancement of growth/yield and photosynthesis at higher CO2 concentrations. To explore this, we investigated the responses of a diverse range of wild and cultivated ryegrass genotypes, with contrasting geographical origins, to ambient and elevated CO2 concentrations and examined what genetically tractable plant trait(s) might be targeted by plant breeders for future yield enhancements. We found substantial ~7-fold intraspecific variations in biomass productivity among the different genotypes at both CO2 levels, which were related primarily to differences in tillering/leaf area, with only small differences due to leaf photosynthesis. Interestingly, the ranking of genotypes in terms of their response to both CO2 concentrations was similar. However, as expected, estimates of whole-plant photosynthesis were strongly correlated with plant productivity. Our results suggest that greater yield gains under elevated CO2 are likely through the exploitation of genetic differences in tillering and leaf area rather than focusing solely on improving leaf photosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921301 | PMC |
http://dx.doi.org/10.1093/jxb/eraa584 | DOI Listing |
Plant Cell
January 2025
Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom.
C4 photosynthesis is a highly efficient form of photosynthesis that utilises a biochemical pump to concentrate CO2 around rubisco. Although variation in the implementation of this biochemical pump exists between species, each variant of the C4 pathway is critically dependent on metabolite transport between organelles and between cells. Here we review our understanding of metabolite transport in C4 photosynthesis.
View Article and Find Full Text PDFmSystems
January 2025
Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.
A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Food Science and Engineering, South China University of Technology, Guangzhou, China.
Background: Polyether ether ketone (PEEK) was modified by a sulfuric and nitric acid mixed system to improve the solubility of the material and the gas selective permeability of the film. SN1 and SN5, synthesized from mixed acid systems (with ratios of nitric acid and sulfuric acid of 1:1 and 1:5, respectively) were chosen because they had comparable nitro groups but differing sulfonyl groups. To investigate the impact of the type and content of sulfonated and nitrated polyether ether ketone (SNPEEK) on the structure and physicochemical properties of the films, SN1/polyvinyl chloride (PVC) and SN5/polyvinyl chloride films were made by adding varying amounts of SN1 and SN5 (0.
View Article and Find Full Text PDFACS Omega
January 2025
College of Safety Science & Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China.
The objective of this study was to evaluate the effect of injecting flue gas (CO, N, and O) originating from coal-fired power plants into a coal seam on CH extraction and CO geological storage. To this end, a multifield thermal-fluid-solid-coupled mathematical model of flue gas injection extraction was established. The results showed that with the increase in time increase, the volume concentration of CH decreased, but the CO, N, and O increased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!