The effects of seed size and drought stress on the growth and physiological characteristics of seedlings were investigated under shading conditions of a pot experiment in greenhouse. There were four treatments, including 80% field water content (FWC), 60% FWC, 40% FWC, and 20% FWC [CK, light drought stress (LDS), medium drought stress (MDS), and high drought stress (HDS), respectively]. The results showed that leaf area per plant, total dry mass, and root-shoot ratio of seedlings regenerated from large seeds (3.05±0.38 g) were significantly higher than those from small seeds (1.46±0.27 g) in all four treatments. Shoot height, basal stem diameter, leaf number, specific leaf area, relative growth rate, and net assimilation rate of the seedlings from large seeds were higher than those of seedlings from small seeds under the treatments of LDS, MDS and HDS. Activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in large-seeded seedlings were higher than those of small-seeded seedlings under all treatments, while the contents of MDA, soluble protein, free proline, and total chlorophyll of large-seeded seedlings were higher than those of small-seeded seedlings only under some drought stress treatments. All growth parameters except the root-shoot ratio decreased with the increases of drought stress. The HDS treatment resulted in 19.4% and 20.0% decline in total dry mass of large- and small-seeded seedlings respectively, compared with those of CK. With increasing drought stress, the activities of POD, CAT, and SOD decreased after an initial increase. POD activity of large- and small-seeded seedling under MDS treatment was 126.7% and 142.1% higher than CK, while CAT was 170.0% and 151.9% higher than CK, respectively. However, the MDA content of seedlings from large and small seeds under HDS treatment was 86.5% and 68.9% higher than that of CK, respectively. The contents of soluble protein, free proline, and total chlorophyll rose at first and then fell with increasing drought stress, and soluble protein content in large- and small-seeded seedlings experienced MDS enhanced 320.7% and 352.7%, respectively. Those results indicated that large-seeded seedlings of . had stronger drought tolerance than small-seeded seedlings due to their growth and physiology advantages. Large-seeded seedlings with stronger resistance to drought stress should be applied to artificial regeneration of the degraded secondary . plantations.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202010.006DOI Listing

Publication Analysis

Top Keywords

drought stress
40
small-seeded seedlings
20
large-seeded seedlings
16
seedlings
14
small seeds
12
soluble protein
12
large- small-seeded
12
drought
11
stress
10
seed size
8

Similar Publications

Appropriate vegetation restoration measures are beneficial to ecosystem restoration and nutrient retention in ecologically fragile areas. However, the high water consumption of planted forests and the increasing frequency of drought events may reshape or complicate this ecological process. The effects of forest types and drought stress on nutrient limitation remain unclear.

View Article and Find Full Text PDF

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Ectothermic arthropods, like ticks, are sensitive indicators of environmental changes, and their seasonality plays a critical role in tick-borne disease dynamics in a warming world. Juvenile tick phenology, which influences pathogen transmission, may vary across climates, with longer tick seasons in cooler climates potentially amplifying transmission. However, assessing juvenile tick phenology is challenging in climates where desiccation pressures reduce the time ticks spend seeking blood meals.

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF

Revised method for constructing acoustic vulnerability curves in trees.

Tree Physiol

January 2025

Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.

During drought, the formation of air bubbles known as embolisms in the water-conducting xylem reduces hydraulic conductivity, which can ultimately result in tree death. Accurately quantifying vulnerability to embolism formation is therefore essential for understanding tree hydraulics. Acoustic emission (AE) analysis offers a non-destructive method to monitor this process, yet the interpretation of captured signals remains debated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!