Although single-wall carbon nanotubes (SWCNTs) exhibit various colors in suspension, directly synthesized SWCNT films usually appear black. Recently, a unique one-step method for directly fabricating green and brown films has been developed. Such remarkable progress, however, has brought up several new questions. The coloration mechanism, potentially achievable colors, and color controllability of SWCNTs are unknown. Here, a quantitative model is reported that can predict the specific colors of SWCNT films and unambiguously identify the coloration mechanism. Using this model, colors of 466 different SWCNT species are calculated, which reveals a broad spectrum of potentially achievable colors of SWCNTs. The calculated colors are in excellent agreement with existing experimental data. Furthermore, the theory predicts the existence of many brilliantly colored SWCNT films, which are experimentally expected. This study shows that SWCNTs as a form of pure carbon, can display a full spectrum of vivid colors, which is expected to complement the general understanding of carbon materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469110PMC
http://dx.doi.org/10.1002/adma.202006395DOI Listing

Publication Analysis

Top Keywords

swcnt films
12
colors
8
single-wall carbon
8
carbon nanotubes
8
coloration mechanism
8
achievable colors
8
colors single-wall
4
carbon
4
nanotubes single-wall
4
swcnts
4

Similar Publications

Semiconducting single-walled carbon nanotubes (SWCNTs) are significantly attractive for thermoelectric generators (TEGs), which convert thermal energy into electricity via the Seebeck effect. This is because the characteristics of semiconducting SWCNTs are perfectly suited for TEGs as self-contained power sources for sensors on the Internet of Things (IoT). However, the thermoelectric performances of the SWCNTs should be further improved by using the power sources.

View Article and Find Full Text PDF

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

Semiconducting single-wall carbon nanotubes (s-SWCNTs) represent one of the most promising materials for surpassing Moore's Law and developing the next generation of electronic devices. Despite numerous developed approaches, reducing the contact resistance of s-SWCNTs networks remains a significant challenge in achieving further enhancements in electronic performance. In this study, antimony triiodide (SbI) is efficiently encapsulated within high-purity s-SWCNTs films at low temperatures, forming 1D SbI@s-SWCNTs vdW heterostructures.

View Article and Find Full Text PDF
Article Synopsis
  • The paper presents a straightforward and scalable method to produce buckypapers using airbrushed SWCNTs on PET substrates, making it accessible without specialized equipment.
  • Research compares the EMI shielding capabilities of buckypapers made from purified and unpurified SWCNTs, finding that purified nanotubes offer better performance due to their higher conductivity.
  • CVD-synthesized graphene plates exhibit excellent properties for microwave absorption, reflected by low reflection and high absorption coefficients, enhancing their effectiveness in shielding applications.
View Article and Find Full Text PDF

Carbon Nanotube-Based Chemiresistive Sensor Array for Dissolved Gases.

ACS Omega

November 2024

Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada.

Dissolved gases such as oxygen (DO) and ammonia (dNH) are among the most consequential parameters for the assessment of water quality. Since the concentrations of DO and dNH are interdependent through the nitrogen cycle, simultaneous monitoring can be useful in many applications. For example, in wastewater treatment, aeration baths are used to adjust the rate of removal of ammonia by the bioactive sludge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!