Methods for the detection of m6A by RNA-Seq technologies are increasingly sought after. We here present NOseq, a method to detect m6A residues in defined amplicons by virtue of their resistance to chemical deamination, effected by nitrous acid. Partial deamination in NOseq affects all exocyclic amino groups present in nucleobases and thus also changes sequence information. The method uses a mapping algorithm specifically adapted to the sequence degeneration caused by deamination events. Thus, m6A sites with partial modification levels of ∼50% were detected in defined amplicons, and this threshold can be lowered to ∼10% by combination with m6A immunoprecipitation. NOseq faithfully detected known m6A sites in human rRNA, and the long non-coding RNA MALAT1, and positively validated several m6A candidate sites, drawn from miCLIP data with an m6A antibody, in the transcriptome of Drosophila melanogaster. Conceptually related to bisulfite sequencing, NOseq presents a novel amplicon-based sequencing approach for the validation of m6A sites in defined sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913672 | PMC |
http://dx.doi.org/10.1093/nar/gkaa1173 | DOI Listing |
Int J Rheum Dis
January 2025
The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.
View Article and Find Full Text PDFCell Death Discov
January 2025
Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, PR China.
Cadmium has been identified as an environmental pollutant and a carcinogen. N-methyladenosine (mA) plays a crucial role in the development of lung tumors, but the mechanisms remain incompletely clarified. In present study, our data demonstrated that prolonged treatment of 1 μmol/L CdSO for 40 passages in bronchial epithelial cells (Beas-2B cells) resulted in the development of a malignant phenotype, which manifested as boosted proliferation, migration and invasion capacity as well as apoptosis reduction.
View Article and Find Full Text PDFInsects
November 2024
College of Life Science, Hebei University, Baoding 071002, China.
: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in , focusing on the influence of transposons across different omics levels.
View Article and Find Full Text PDFNat Neurosci
January 2025
Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
The post-transcriptional regulation of epigenetic modification is a hot topic in skeletal muscle development research. Both m6A modifications and miRNAs have been well-established as crucial regulators in skeletal muscle development. However, the interacting regulatory mechanisms between m6A modifications and miRNAs in skeletal muscle development remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!