A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics. | LitMetric

Micro-magnetofluidics offers a promising tool for better control over the ferrofluid droplet manipulation which has been vastly utilized in biomedical applications in recent years. In this study, the ferrofluid droplet splitting under an asymmetric Pulse-Width-Modulated (PWM) magnetic field in a T-junction is numerically investigated using a finite volume method and VOF two-phase model. By utilizing the PWM magnetic field, two novel regimes of ferrofluid droplet splitting named as Flowing through the Same Branch (FSB) and Double Splitting (DS) have been observed for the first time. In the FSB regime, the daughter droplets move out of the same microchannel outlet, and in the DS regime, the droplet splitting occurs two times which results in generating three daughter droplets. The main problem related to the asymmetric droplet splitting under a steady magnetic field is daughter droplet trapping. By using a PWM magnetic field, this issue is resolved and the trapped/escaped regions are obtained in terms of the duty cycle and dimensionless magnetic field frequency. The effects of six important dimensionless parameters on the splitting ratio, including magnetic Bond number, duty cycle, dimensionless magnetic field frequency, capillary number, dimensionless mother droplet length, and dimensionless dipole position are investigated. The results showed that the splitting ratio increases with increasing magnetic Bond number or duty cycle, or decreasing the dimensionless magnetic field frequency. Eventually, a correlation is offered for the splitting ratio based on the dimensionless variables with an average relative error of 2.67%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01764gDOI Listing

Publication Analysis

Top Keywords

magnetic field
32
droplet splitting
16
ferrofluid droplet
12
pwm magnetic
12
duty cycle
12
dimensionless magnetic
12
field frequency
12
splitting ratio
12
magnetic
10
splitting
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!