In molecular and cellular biological research, cell isolation and sorting are required for accurate investigation of cell populations of specific physical or biological characteristics. By employing unique cell properties to distinguish between heterogeneous cell populations, rapid and accurate sorting with high efficiency is possible. Dielectrophoresis-based cell manipulation has significant promise for separation of cells based on their physical properties and is used in diverse areas ranging from cellular diagnostics to therapeutic applications. In this study, we present a microfluidic device that can achieve label-free and size-based cell separation with high size differential resolution from a mono-cellular population or complex sample matrices. It was realized by using the tunnel dielectrophoresis (TDEP) technique to manipulate the spatial position of individual cells three dimensionally with high resolution. Cells were processed in high speed flows in high ionic strength buffers. A mixture of different sizes of polystyrene micro-particles with a size difference as small as 1 μm can be separated with high purity (>90%). For the first time, high-pass, low-pass, and band-pass filtering within a mono-cellular mammalian cell population were demonstrated with a tunable bandwidth as small as 3 μm. In addition, leukocyte subtype separation was demonstrated by sorting monocytes out of peripheral blood mononuclear cells (PBMCs) from whole blood with high purity (>85%). Its ability to deliver real-time adjustable cut-off threshold size-based cell sorting and its capability to provide an arbitrary cell size pick-up band could potentially enable many research and clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0lc00853b | DOI Listing |
J Proteome Res
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Extracellular vesicles (EVs) are emerging as crucial biomarkers in cancer diagnostics and therapeutics with their heterogeneity presenting both challenges and opportunities in prostate cancer research. However, existing methods for isolating and characterizing EV subtypes have been limited by inefficient separation and inadequate proteomic analysis. Here we show an optimized centrifugal microfluidic device, Exodisc, that efficiently isolates large quantities of EV subtypes from particle-enriched medium, enabling comprehensive proteomic analysis of small (EV-S, 20-200 nm) and large (EV-L, >200 nm) EVs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Integrated Circuits, Peking University, Beijing, 100871, China.
The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are gaining recognition as promising therapeutic carriers for immune modulation. We investigated the potential of EVs derived from HEK293FT cells to stabilize and deliver interleukin-10 (IL-10), a key anti-inflammatory cytokine. Using minicircle (MC) DNA vectors, we achieved IL-10 overexpression and efficient incorporation into EVs, yielding superior stability compared to free, recombinant IL-10 protein.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States.
Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.
View Article and Find Full Text PDFBiochemistry
January 2025
Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!