A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Collagen Mineralization with Amelogenin Peptide: Towards the Restoration of Dentin. | LitMetric

Enhancing Collagen Mineralization with Amelogenin Peptide: Towards the Restoration of Dentin.

ACS Biomater Sci Eng

Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles 90033, United States.

Published: April 2020

Mammalian teeth primarily consist of two distinct calcified tissues, enamel and dentin, that are intricately integrated by a complex and critical structure, the dentin-enamel junction (DEJ). Loss of enamel exposes the underlying dentin, increasing the risk of several irreversible dental diseases. This paper highlights the significance of utilizing the functional domains of a major enamel matrix protein, amelogenin, intrinsic to tooth enamel and the DEJ interface, to rationally design smaller bioinspired peptides for regeneration of tooth microstructures. Using this strategy, we designed a synthetic peptide, P26, that demonstrates a remarkable dual mineralization potential to restore incipient enamel decay and mineralization defects localized in peripheral dentin below the DEJ. As a proof of principle, we demonstrate that interaction between P26 and collagen prompts peptide self-assembly, followed by mineralization of collagen fibrils . P26-mediated nucleation of hydroxyapatite (HAP) crystals on demineralized dentin significantly facilitates the recovery of mineral density and effectively restores the biomechanical properties of dentin to near-native levels, suggesting that P26-based therapy has promising applications for treating diverse mineralized tissue defects in the tooth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725229PMC
http://dx.doi.org/10.1021/acsbiomaterials.9b01774DOI Listing

Publication Analysis

Top Keywords

dentin
6
enamel
5
enhancing collagen
4
mineralization
4
collagen mineralization
4
mineralization amelogenin
4
amelogenin peptide
4
peptide restoration
4
restoration dentin
4
dentin mammalian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!