Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mammalian teeth primarily consist of two distinct calcified tissues, enamel and dentin, that are intricately integrated by a complex and critical structure, the dentin-enamel junction (DEJ). Loss of enamel exposes the underlying dentin, increasing the risk of several irreversible dental diseases. This paper highlights the significance of utilizing the functional domains of a major enamel matrix protein, amelogenin, intrinsic to tooth enamel and the DEJ interface, to rationally design smaller bioinspired peptides for regeneration of tooth microstructures. Using this strategy, we designed a synthetic peptide, P26, that demonstrates a remarkable dual mineralization potential to restore incipient enamel decay and mineralization defects localized in peripheral dentin below the DEJ. As a proof of principle, we demonstrate that interaction between P26 and collagen prompts peptide self-assembly, followed by mineralization of collagen fibrils . P26-mediated nucleation of hydroxyapatite (HAP) crystals on demineralized dentin significantly facilitates the recovery of mineral density and effectively restores the biomechanical properties of dentin to near-native levels, suggesting that P26-based therapy has promising applications for treating diverse mineralized tissue defects in the tooth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725229 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.9b01774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!