For many decades only a few formulas have been available to calculate the intraocular lens (IOL) power for patients undergoing cataract surgery: the Haigis, Hoffer Q, Holladay 1 and 2 and SRK/T. In recent years, several new formulas for IOL power calculation have been introduced with the aim of improving the accuracy of refraction prediction in eyes undergoing cataract surgery. These include the Barrett Universal II, the Emmetropia Verifying Optical (EVO), the Kane, the Næser 2, the Olsen, the Panacea, the Pearl DGS, the Radial Basis Function (RBF), the T2 and the VRF formulas. Although most of them are unpublished so that their structure is unknown, we give an overview of each formula and report the results of the studies that have compared them. Their performance in short and long eyes is provided and a special focus is given on the issue of segmented axial length, which is a promising method to obtain more accurate outcomes in short and long eyes. Here, the group refractive index originally developed for the IOLMaster may not represent the best method to convert the optical path length into a physical distance. The issue of posterior and total corneal astigmatism (TCA) is discussed in relation to toric IOLs; the latest formulas for toric IOLs and their results are also reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729321PMC
http://dx.doi.org/10.21037/atm-20-2290DOI Listing

Publication Analysis

Top Keywords

intraocular lens
8
power calculation
8
iol power
8
undergoing cataract
8
cataract surgery
8
short long
8
long eyes
8
toric iols
8
developments intraocular
4
lens power
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!