Tumor immunotherapy, especially that involving programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) immunosuppressive checkpoint inhibitors, has become an important part of tumor treatment strategy in the past decade. Blocking PD-1/PD-L1 signaling pathway can reduce the inhibitory effect of PD-1 pathway on T cells, promote the anti-tumor activity of activated T cells, and prolong the remission period of tumor. While PD-1/PD-L1 immunotherapy is effective in the treatment of solid malignant tumors, it also has shortcomings, due to the complexity of the tumor microenvironment (TME). Regulatory T cells (Tregs) and T helper 17 (Th17) cells play an important role in the TME and are closely related to the occurrence and development of tumors. Tregs can inhibit the anti-tumor immune effect, while Th17 cells play a dual role in tumor immunity, which not only promotes tumorigenesis but also promotes anti-tumor immunity. In the occurrence and development of tumor, PD-1/PD-L1 pathway, Tregs and Th17 cells are interrelated. However, the complicated relationship between the PD-1/PD-L1 pathway, Tregs, and Th17 cells has not been fully clarified. Here, we summarize the immunoregulation mechanisms and discuss the crosstalk between the PD-1/PD-L1 pathway, Tregs, and Th17 cells, with the aim of providing novel insights for future cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729304 | PMC |
http://dx.doi.org/10.21037/atm-20-6719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!