Background: Endometrial cancer poses a serious threat to women's health worldwide, and its pathogenesis, although actively explored, is not fully understood. DLGAP5 is a recently identified cell cycle-regulation gene not reported in endometrial cancer. This study was aiming to analyze the role of DLGAP5 in tumorigenesis and development and to investigate its prognostic significance of patients with endometrial cancer.
Methodology: Microarray datasets (GSE17025, GSE39099 and GSE63678) from the GEO database were used for comparative analysis, and their intersection was obtained by applying the Venn diagram, and DLGAP5 was selected as the target gene. Next, transcriptome data ( = 578) was downloaded from TCGA-UCEC to analyze the mRNA expression profile of DLGAP5. Then, immunohistochemical data provided by HPA were used to identify the different protein expression levels of DLGAP5 in tumor tissues and normal tissues. Subsequently, the prognostic meaning of DLGAP5 in patients with endometrial cancer was explored based on survival data from TCGA-UCEC ( = 541). Finally, the reliability of DLGAP5 expression was verified by RT-qPCR.
Results: Transcriptome data from TCGA-UCEC, immunohistochemical data from HPA, and RT-qPCR results from clinical samples were used for triple validation to confirm that the expression of DLGAP5 in endometrial cancer tissues was significantly higher than that in normal endometrial tissues. Kaplan-Meier survival analysis announced that the expression level of DLGAP5 was negatively correlated with the overall survival of patients with endometrial cancer.
Conclusions: DLGAP5 is a potential oncogene with cell cycle regulation, and its overexpression can predict the poor prognosis of patients with endometrial cancer. As a candidate target for the diagnosis and treatment of endometrial cancer, it is worthwhile to make further study to reveal the carcinogenicity of DLGAP5 and the mechanism of its resistance of organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703392 | PMC |
http://dx.doi.org/10.7717/peerj.10433 | DOI Listing |
Sci Rep
January 2025
Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China.
Zhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.
To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
To investigate whether the immunohistochemical results of two markers PMS2 and MSH6 (2-MMR) could replace the four markers MLH1, PMS2, MSH2 and MSH6 (4-MMR) to detect mismatch repair deficient (dMMR) cancers. A retrospective analysis was conducted with summary of immunohistochemical data from 7 867 cases of gastric cancer, colorectal cancer, endometrial cancer, and other diseases in the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China, from March 2018 to March 2023. The consistency of 2-MMR and 4-MMR results was examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!