The aim of this study was to evaluate the efficiency of photocatalytic ozonation process using graphene-dioxide titanium nanocomposite in removing Pentachlorophenol (PCP) from aqueous solutions. In this study, nanocomposites with graphene to TiO(G/T) ratios of 1:10 and 1:20 were synthesized by hydrothermal method, and its characteristics were assessed using various analyses, SEM, XRD, FTIR, TEM, BET and TGA. In this process, the effects of parameters including O concentration (0.25-1.25 mg/L), nanocomposite concentration (50-500 mg/L), initial PCP concentration (10-100 mg/L), and time (10-60 min), were studied. The results showed that PCP removal efficiency was increased by decreasing solute concentration. Increasing nanocomposite dose to 100 mg/L was led to an increase in efficiency (99.1%), but then a decreasing trend was observed. Increasing the concentration of ozone, up to specific value, also enhanced the efficiency but then had a negative effect on process efficiency. Furthermore, the optimum ratio of the catalyst was determined to be 1:20. The highest efficiency of the process for initial pentachlorophenol concentration of 100 mg/L was obtained 98.82% in optimum conditions (catalyst dose of 100 mg/L and 60 min). It is concluded that the photocatalytic ozonation process using graphene-dioxide titanium nanocomposite had the highest efficiency in removal and mineralization of PCP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721932PMC
http://dx.doi.org/10.1007/s40201-020-00529-1DOI Listing

Publication Analysis

Top Keywords

photocatalytic ozonation
12
ozonation process
12
pentachlorophenol pcp
8
pcp removal
8
process graphene-dioxide
8
graphene-dioxide titanium
8
titanium nanocomposite
8
dose 100 mg/l
8
highest efficiency
8
efficiency
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!