Purpose: Effluents produced in the textile industries are important sources of water pollution due to the presence of toxic dyes, auxiliary chemicals, organic substances etc. Recycling of such industrial wastewater is one major aspect of sustainable water management; hence present study is focused on an eco-friendly process development for reclamation of higher loading textile wastewater.
Method: Industrial effluent samples with varying loading were collected from textile processing units located in and around Kolkata city. Vegetable waste collected from local market was utilized to prepare an efficient biochar for elimination of the recalcitrant dyes. Prior to adsorption, ceramic ultrafiltration (UF) process was used for reduction of the organic loading and other suspended and dissolved components.
Results: A remarkably high BET surface area of 1216 mg and enhanced pore volume of 1.139 cmg was observed for biochar. The maximum adsorption capacity obtained from the Langmuir isotherm was about 300 mg.g. The combined process facilitated >99% removal of dyes and 77-80% removal of chemical oxygen demand (COD) from the various samples of effluent. The treated effluent was found suitable to discharge or reuse in other purposes. About 95% of dye recovery was achieved during biochar regeneration with acetone solution. The dye loaded spent biochar was composted with dry leaves and garden soil as bulking agent. Prepared compost could achieve the recommended parameters with high nutritional value after 45 days.
Conclusions: The overall study showed potential of the proposed process towards treatment of toxic dye loaded textile effluent in an environment friendly and sustainable approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721960 | PMC |
http://dx.doi.org/10.1007/s40201-020-00520-w | DOI Listing |
J Environ Manage
December 2024
Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:
The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.
View Article and Find Full Text PDFHeliyon
December 2024
Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The extensive use of azo dyes in textile and pharmaceutical industries pose significant environmental and health risks. This problem requires to be tackled forthwith through a cheap, environmentally friendly and viable approach to mitigate water pollution. In this context, the green synthesis method was used for synthesis of ZnO NPs.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Biotechnology, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai 600 119, Tamil Nadu, India.
This study investigates the potentials of Chlorococcum humicolo algal biomass for the extraction of valuable biochemical and biodiesel production, with focus on the phycoremediation of textile dye effluents. The alga was cultivated in three media: CFTRI medium, combined dye effluent, and dye bath effluent in the laboratory. The highest cell count (254 × 10 cells/ml) and lowest oil content (16.
View Article and Find Full Text PDFMolecules
November 2024
Dr. Ikram ul Haq Institute of Industrial Biotechnology, GC University, Lahore 54600, Pakistan.
The aim of the present research was the efficient degradation of industrial textile wastewater dyes using a very active cloned laccase enzyme. For this purpose, potent laccase-producing bacteria were isolated from soil samples collected from wastewater-replenished textile sites in Punjab, Pakistan. The laccase gene from locally isolated strain LI-81, identified as , was cloned into vector pET21a, which was further transformed into BL21 codon plus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!