Date palm (.) is an important tropical fruit growing in central and southern regions of Iran. Date seed is composed of cellulose, hemicellulose, and lignin, that make it an excellent candidate for xylooligosaccharide (XOS) production. In this study, two different protocols are used for the extraction of hemicellulose from date seeds. In the first protocol, hemicellulose (xylan1) was extracted by 2.25 M alkaline solution at room temperature for 24 hr. In the second protocol, date seed was treated with LCHTA (low concentration, 0.1 M, high temperature, 80°C, alkaline solution) for 3 hr, and thereafter, hemicellulose (xylan2) was extracted by 2.25 M alkaline solution at room temperature for 24 hr. The carbohydrate units of xylan1 and xylan2 were qualified and quantified by HPAEC- PAD. Side groups of xylan1 and xylan2 were detected by FTIR. In the next step, xylan1 and xylan2 were exposed to two commercial endoxylanases namely veron 191 and pentopan mono BG. Temperature, pH, time, and enzyme dosage of hydrolyzation were optimized to maximize XOS and minimize xylose. The results showed that the enzymes successfully hydrolyzed xylan2 and produced XOS, but cannot hydrolyze xylan1. Pentopan mono BG and veron 191 produced the highest amount of XOS after 4 (1.17 mmol/g) and 6 hr (1.13 mmol/g) of incubation, respectively. Conversion factors of xylan2 to XOS for pentopan mono BG and veron were 0.41 and 0.36, respectively. This study presence the possible prebiotic properties of date seed XOS and its application in functional foods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723205PMC
http://dx.doi.org/10.1002/fsn3.1964DOI Listing

Publication Analysis

Top Keywords

alkaline solution
12
xylan1 xylan2
12
pentopan mono
12
extracted 225 m
8
225 m alkaline
8
solution room
8
room temperature
8
temperature 24 hr
8
veron 191
8
mono veron
8

Similar Publications

Arresting of efflorescence in ceramic tiles developed using caustic alumina industry waste (red mud).

Sci Total Environ

January 2025

CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, Madhya Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

Conversion of caustic red mud (RM, Alumina industry waste) into building materials becoming one of the viable solution for its large scale utilization. The building materials developed using RM often results in efflorescence due to its high alkalinity, which is detrimental for the structural integrity of the buildings. The X-ray shielding tiles developed through ceramic route using the mixtures of RM, BaSO and kaolin clay also suffers from severe NaSO efflorescence when sintered above 1000 °C.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.

View Article and Find Full Text PDF

Effect of Strengthening Mechanism of Alkali Curing on Mechanical Properties of Fly Ash Lightweight Aggregates and Its Concrete.

Materials (Basel)

December 2024

Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221116, China.

The low hydration degree of fly ash in Fly Ash Unburned Lightweight Aggregate (FULA) is not conducive to the development of the mechanical properties of lightweight aggregates and their concrete. In this paper, FULA was immersed in an alkaline solution with the purpose of improving the mechanical properties of FULA and its concrete. Firstly, FULA was prepared using fly ash as the main raw material.

View Article and Find Full Text PDF

The Influence of Mineral Additives on Aggregate Reactivity.

Materials (Basel)

December 2024

Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 Gen. Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland.

In this article, the authors present the results of their research on assessing the effect of selected mineral additives on the alkaline reactivity of aggregates. The main objective of this research was to check whether the reactivity of aggregates that do not meet the standard requirements can be reduced. Due to the decreasing availability of crushed aggregates and the decreasing resources of sand used for cement concrete road surfaces, solutions should be sought that allow the use of lower-grade aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!