Soybean oil body (SOB), rich in polyunsaturated fatty acids and biologically active substances, is used as a natural emulsifier in food processing. In addition, SOB is healthier than synthetic emulsifiers. However, the physical and chemical properties of the SOB emulsion directly affect its application in food processing. In order to study the effect of water bath extraction (WBAE) on SOBs, the effects of WBAE method on the composition of SOBs, the zeta potential, average particle size, oxidation stability, and viscosity characteristics of SOB emulsions were researched. It was found that both protein and moisture contents of SOB decreased with increasing WBAE temperature; however, lipid content increased. These results were attributed to the exogenous proteins gradually denatured and dissociated with extraction temperature from 60°C to 100°C. Increasing the extraction temperature, the average particle size of the SOB emulsions increased, the oxidative stability was improved, the Zeta potential and viscosity decreased, and the fluidity of emulsions was improved. The SOB extracted at 100°C has broad application prospects in food, and this research is meaningful for supplying fundamental information for selecting proper extraction temperature of SOBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723176 | PMC |
http://dx.doi.org/10.1002/fsn3.1921 | DOI Listing |
Ital J Food Saf
January 2025
Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
The formation of histamine in food is influenced by temperature, and histamine growth can be inhibited by maintaining a cold chain. However, simply relying on temperature control is insufficient, as certain bacteria can produce the enzyme histidine decarboxylase even at temperatures below 5°C. To address this issue, various methods, such as modified atmosphere packaging, high hydrostatic pressure, and irradiation, have been developed to control histamine in fishery products.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL. A1C 5S7, Canada.
With climate change, fish are facing rising temperatures, an increase in the frequency and severity of heat waves and hypoxia, sometimes concurrently. However, only limited studies have examined the combined effects of increases in temperature and hypoxia on fish physiology and survival. We measured the cardiorespiratory physiology of 12°C-acclimated Atlantic salmon when exposed acutely to normoxia [100% air saturation (sat.
View Article and Find Full Text PDFFront Nutr
January 2025
Department of BioSciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore, India.
Consumption of plant-based food is steadily increasing and follows an augmented trend owing to their nutritive, functional, and energy potential. Different bioactive fractions, such as phenols, flavanols, and so on, contribute highly to the nutritive profile of food and are known to have a sensitivity toward higher temperatures. This limits the applicability of traditional thermal treatments for plant products, paving the way for the advancement of innovative and non-thermal techniques such as pulsed electric field, microwave, ultrasound, cold plasma, and high-pressure processing.
View Article and Find Full Text PDFNat Commun
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.
View Article and Find Full Text PDFObjectives: This study aimed to develop a prediction model for the detection of early sepsis-associated acute kidney injury (SA-AKI), which is defined as AKI diagnosed within 48 hours of a sepsis diagnosis.
Design: A retrospective study design was employed. It is not linked to a clinical trial.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!