Plantaginis Semen (PS) has been used to promote diuresis and clear away dampness. Recent reports have shown that PS can be used to treat gouty nephropathy (GN). However, the action and mechanism of PS have not been well defined in treating GN. The present study aimed to define the molecular mechanisms of PS as a potential therapeutic approach to treat GN. A combination of network pharmacology and validation experiments in GN is used to understand the potential mechanism. Information on pharmaceutically active compounds in PS and gene information related to GN was obtained from public databases. The compound target network and protein-protein interaction network were constructed to study the mechanism of action of PS in the treatment of GN. The mechanism of action of PS in the treatment of GN was analyzed via Gene Ontology (GO) biological process annotation and Kyoto Gene and Genomics Encyclopedia (KEGG) pathway enrichment. Validation experiments were performed to verify the core targets. The GN rat model was prepared by the method of combining yeast and adenine. Hematoxylin-eosin (HE) staining was used to observe the morphology of renal tissue in rats. ELISA was applied to detect TGF-1, TNF-, and IL-1 levels in renal tissue. The expressions of TGF-1, TNF-, and IL-1 were determined using immunohistochemistry. Through the results of network pharmacology, we obtained 9 active components, 118 predicted targets, and 149 GN targets from the public database. Based on the protein-protein interaction (PPI), 26 hub genes for interaction with PS treating for GN were screened, including MMP9, TNF, IL1, and IL6. The enrichment analysis results showed that the treatment of GN with PS was mainly involved in the TGF-1 signaling pathway, MAPK signaling pathway, TNF signaling pathway, NF-B signaling pathway, and PI3K Akt signaling pathway. Validation experiment results showed that PS could reduce the content of urinary protein and UA and deregulate the expression of TGF-1, TNF-, and IL-1 in the treatment of GN. The molecular mechanism of PS in the treatment of GN indicated the synergistic features of multicomponent, multitarget, and multipathway of traditional Chinese medicine, which provided an essential scientific basis for further elucidating the mechanism of PS in the treatment of GN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719544PMC
http://dx.doi.org/10.1155/2020/8861110DOI Listing

Publication Analysis

Top Keywords

signaling pathway
20
tgf-1 tnf-
12
tnf- il-1
12
plantaginis semen
8
gouty nephropathy
8
network pharmacology
8
validation experiments
8
protein-protein interaction
8
mechanism action
8
action treatment
8

Similar Publications

Cardiovascular diseases (CVDs) are the leading cause of mortality among individuals with noncommunicable diseases worldwide. Obesity is associated with an increased risk of developing cardiovascular disease (CVD). Mitochondria are integral to the cardiovascular system, and it has been reported that mitochondrial transfer is associated with the pathogenesis of multiple CVDs and obesity.

View Article and Find Full Text PDF

Background: The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro.

View Article and Find Full Text PDF

Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway.

Nutr Metab (Lond)

December 2024

College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China.

Objective: Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats.

View Article and Find Full Text PDF

Schistosoma sex-biased microRNAs regulate ovarian development and egg production by targeting Wnt signaling pathway.

Commun Biol

December 2024

Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China.

Adult Schistosoma produces a large number of eggs that play essential roles in host pathology and disease dissemination. Consequently, understanding the mechanisms of sexual maturation and egg production may open a new avenue for controlling schistosomiasis. Here, we describe that Bantam miRNA and miR-1989 regulate Wnt signaling pathway by targeting Frizzled-5/7/9, which is involved in ovarian development and oviposition.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!