We report an easy to construct imaging system that can resolve particles separated by [Formula: see text] 0.68 [Formula: see text]m with minimum aberrations. Its first photon collecting lens is placed at a distance of 31.6 mm giving wide optical access. The microscope has a Numerical Aperture (NA) of 0.33, which is able to collect signal over 0.36 sr. The diffraction limited objective and magnifier recollects 77% photons into the central disc of the image with a transverse spherical aberration of 0.05 mm and magnification upto 238. The system has a depth of field of 142 [Formula: see text]m and a field of view of 56 [Formula: see text]m which images a large ensemble of atoms. The imaging system gives a diffraction limited performance over visible to near-infrared wavelengths on optimization of the working distance and the distance between the objective and magnifier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732857PMC
http://dx.doi.org/10.1038/s41598-020-78509-6DOI Listing

Publication Analysis

Top Keywords

imaging system
12
[formula text]m
12
easy construct
8
diffraction limited
8
objective magnifier
8
construct sub-micron
4
sub-micron resolution
4
resolution imaging
4
system
4
system report
4

Similar Publications

Mercury(II) is highly toxic thus the selective and sensitive detection of Hg(II) is important. This research article deals with the synthesis and characterization of the fluorogenic system based on diselenide containing rhodamine by single crystal XRD. The probe has been used for selective detection of Hg(II) in aqueous media with detection limit of 62.

View Article and Find Full Text PDF

Smart Stimuli-responsive Nanogels: A Potential Tool for Targeted Drug Delivery.

Curr Pharm Des

January 2025

Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.

Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers.

View Article and Find Full Text PDF

Aim: Thyroid nodules, based on high-resolution ultrasonography (HRUS), are among the most common endocrine abnormalities that affect the general population because of their high estimated prevalence rates. Fine needle aspiration cytology (FNAC) is a safe, cost-effective modality to differentiate between benign and malignant thyroid nodules based on the Bethesda System for Reporting Thyroid Cytopathology (BSRTC), thus avoiding unnecessary surgery. However, categories III and IV of BSRTC remain a controversial issue in clinical practice, encompassing a wide range of risks of malignancy.

View Article and Find Full Text PDF

Wound Healing Splinting Devices for Faster Access and Use.

JID Innov

March 2025

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

With the goal of studying skin wound healing and testing new drug treatments to enhance wound healing in rodent models, there is a clear need for improved splinting techniques to increase surgical efficiency and support routine wound monitoring. Splinted wound healing models humanize wound healing in rodents to prevent contraction and instead heal through granulation tissue deposition, increasing the relevance to human wound healing. Current technologies require suturing and heavy wrapping, leading to splint failure and cumbersome monitoring of the wound.

View Article and Find Full Text PDF

Parathyroid carcinoma (PC) is one of the rarest malignant neoplasms of the human endocrine system, with a prevalence of approximately 0.005% of all oncological diseases. Despite its indolent course, PC generally relapses in about 40%-60% of cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!