Ocean planning for species on the move provides substantial benefits and requires few trade-offs.

Sci Adv

Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.

Published: December 2020

Societies increasingly use multisector ocean planning as a tool to mitigate conflicts over space in the sea, but such plans can be highly sensitive to species redistribution driven by climate change or other factors. A key uncertainty is whether planning ahead for future species redistributions imposes high opportunity costs and sharp trade-offs against current ocean plans. Here, we use more than 10,000 projections for marine animals around North America to test the impact of climate-driven species redistributions on the ability of ocean plans to meet their goals. We show that planning for redistributions can substantially reduce exposure to risks from climate change with little additional area set aside and with few trade-offs against current ocean plan effectiveness. Networks of management areas are a key strategy. While climate change will severely disrupt many human activities, we find a strong benefit to proactively planning for long-term ocean change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732182PMC
http://dx.doi.org/10.1126/sciadv.abb8428DOI Listing

Publication Analysis

Top Keywords

climate change
12
ocean planning
8
species redistributions
8
trade-offs current
8
current ocean
8
ocean plans
8
ocean
6
species
4
planning species
4
species move
4

Similar Publications

Background: Many species are exhibiting range shifts associated with anthropogenic change. For migratory species, colonisation of new areas can require novel migratory programmes that facilitate navigation between independently-shifting seasonal ranges. Therefore, in some cases range-shifts may be limited by the capacity for novel migratory programmes to be transferred between generations, which can be genetically and socially mediated.

View Article and Find Full Text PDF

Wildfire ashes: evaluating threats on the Pantanal wetland reserve (Mato Grosso, Brazil) using ecotoxicological tests.

Environ Sci Pollut Res Int

January 2025

Program in Biodiversity and Nature Conservation (UFJF), Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF), University Campus, Martelos, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil.

In 2020, the largest continuous wetland area on the planet, the Brazilian Pantanal, experienced an unprecedented fire that affected the entire ecosystem. Our goal was to elucidate the effects of ash presence following the fire events. We quantified the impact of ashes, collected in four Conservation Units, on soil, water, and atmosphere.

View Article and Find Full Text PDF

Ocean surface temperatures and the frequency and intensity of marine heatwaves are increasing worldwide. Understanding how marine organisms respond and adapt to heat pulses and the rapidly changing climate is crucial for predicting responses of valued species and ecosystems to global warming. Here, we carried out an in situ experiment to investigate sublethal responses to heat spikes of a functionally important intertidal bivalve, the venerid clam Austrovenus stutchburyi.

View Article and Find Full Text PDF

Nonlinear exposure-response associations of daytime, nighttime, and day-night compound heatwaves with mortality amid climate change.

Nat Commun

January 2025

School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.

Heatwaves are commonly simplified as binary variables in epidemiological studies, limiting the understanding of heatwave-mortality associations. Here we conduct a multi-country study across 28 East Asian cities that employed the Cumulative Excess Heatwave Index (CEHWI), which represents excess heat accumulation during heatwaves, to explore the potentially nonlinear associations of daytime-only, nighttime-only, and day-night compound heatwaves with mortality from 1981 to 2010. Populations exhibited high adaptability to daytime-only and nighttime-only heatwaves, with non-accidental mortality risks increasing only at higher CEHWI levels (75th-90th percentiles).

View Article and Find Full Text PDF

Escalating climate and anthropogenic disturbances draw into question how stable large-scale patterns in biological diversity are in the Anthropocene. Here, we analyse how patterns of reef fish diversity have changed from 1995 to 2022 by examining local diversity and species dissimilarity along a large latitudinal gradient of the Great Barrier Reef and to what extent this correlates with changes in coral cover and coral composition. We find that reef fish species richness followed the expected latitudinal diversity pattern (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!