The most critical problem in the treatment of neurodegenerative diseases is brain neuronal protection, which can be overcome by clearing pathological substances and regulating the immune environment. In the above treatment strategies, the traditional poor drug delivery problem is inevitable. Here, we show an engineering core-shell hybrid system named rabies virus glycoprotein (RVG) peptide-modified exosome (EXO) curcumin/phenylboronic acid-poly(2-(dimethylamino)ethyl acrylate) nanoparticle/small interfering RNA targeting (REXO-C/ANP/S). It is a nanoscavenger for clearing α-synuclein aggregates and reducing their cytotoxicity in Parkinson's disease neurons. The motor behavior of Parkinson's disease mice is substantially improved after REXO-C/ANP/S treatment. In particular, we demonstrate that REXO-C/ANP/S is also a nanoscavenger for clearing immune activation due to its natural immature dendritic cell EXO coating. Our findings show that REXO-C/ANP/S may serve as a platform for neurodegenerative diseases treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732192 | PMC |
http://dx.doi.org/10.1126/sciadv.aba3967 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!