Increasing temperatures and drought in desert ecosystems are predicted to cause decreased vegetation density combined with barren ground expansion. It remains unclear how nutrient availability, microbial diversity, and the associated functional capacity vary between vegetated-canopy and gap soils. The specific aim of this study was to characterize canopy vs gap microsite effect on soil microbial diversity, the capacity of gap soils to serve as a canopy-soil microbial reservoir, nitrogen (N)-mineralization genetic potential ( gene abundance) and urease enzyme activity, and microbial-nutrient pool associations in four arid-hyperarid geolocations of the western Sonoran Desert, Arizona (USA). Microsite combined with geolocation explained 57% and 45.8% of the observed variation in bacterial/archaeal and fungal community composition, respectively. A core microbiome of amplicon sequence variants was shared between the canopy and gap soil communities; however, canopy-soils included abundant taxa that were not present in associated gap communities, thereby suggesting that these taxa cannot be sourced from the associated gap soils. Linear mixed-effects models showed that canopy-soils have significantly higher microbial richness, nutrient content, and organic N-mineralization genetic and functional capacity. Furthermore, gene abundance was detected in all samples suggesting that is a relevant indicator of N-mineralization in deserts. Additionally, novel phylogenetic associations were observed for with the majority belonging to and uncharacterized bacteria. Thus, key N-mineralization functional capacity is associated with a dominant desert phylum. Overall, these results suggest that lower microbial diversity and functional capacity in gap soils may impact ecosystem sustainability as aridity drives open-space expansion in deserts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090872 | PMC |
http://dx.doi.org/10.1128/AEM.02780-20 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFCommun Biol
January 2025
School of Psychology, Shenzhen University, Shenzhen, China.
Speech processing involves a complex interplay between sensory and motor systems in the brain, essential for early language development. Recent studies have extended this sensory-motor interaction to visual word processing, emphasizing the connection between reading and handwriting during literacy acquisition. Here we show how language-motor areas encode motoric and sensory features of language stimuli during auditory and visual perception, using functional magnetic resonance imaging (fMRI) combined with representational similarity analysis.
View Article and Find Full Text PDFNPJ Regen Med
January 2025
Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, USA.
Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.
View Article and Find Full Text PDFSci Rep
January 2025
Heilongjiang Ground Pressure and Gas Control in Deep Mining Key Laboratory, Heilongjiang University of Science and Technology, Harbin, 15002, China.
When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
G protein-coupled receptor 4 (GPR4) belongs to the subfamily of proton-sensing GPCRs (psGPCRs), which detect pH changes in extracellular environment and regulate diverse physiological responses. GPR4 was found to be overactivated in acidic tumor microenvironment as well as inflammation sites, with a triad of acidic residues within the transmembrane domain identified as crucial for proton sensing. However, the 3D structure remains unknown, and the roles of other conserved residues within psGPCRs are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!