Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum.

Mar Environ Res

Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. Electronic address:

Published: February 2021

Under the present CO condition, the efficiency of biological pump mediating carbon sequestration is predicted to decline in the future because respiration tends to be more sensitive to rising temperature than is photosynthesis. However, it remains unknown whether the impacts of global warming on metabolic rates of phytoplankton can be modulated by elevated CO induced ocean acidification. Here we show that in the model diatom species Phaeodactylum tricornutum, E (activation energy) of photosynthesis (~0.5 eV) was significantly lower than that of respiration (1.8 eV), while CO concentration had no effect on the E value. E (deactivation energy) of respiration was increased to 2.5 eV, that was equivalent to E of photosynthesis in high CO-grown cells and 28.4% higher than that in low CO-grown ones. The respiration to photosynthesis ratio (R/P) was consistently higher in high CO condition, which increased with temperature at the beginning and subsequently decreased in both CO conditions. The ratio of R/P in high CO to R/P in low CO gradually increased with temperature above the optimal temperature. Our results imply that ocean acidification will aggravate the negative impacts or offset the alleviating effects of warming on the R/P ratio depending on the temperature range in Phaeodactylum tricornutum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2020.105233DOI Listing

Publication Analysis

Top Keywords

ocean acidification
12
phaeodactylum tricornutum
12
ratio r/p
8
increased temperature
8
temperature
5
influence ocean
4
acidification thermal
4
thermal reaction
4
reaction norms
4
norms carbon
4

Similar Publications

Effects of ocean acidification and warming on apoptosis and immune response in the mussel Mytilus coruscus.

Fish Shellfish Immunol

January 2025

International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China. Electronic address:

Ocean acidification and warming are significant stressors impacting marine ecosystems, exerting profound effects on the physiological ecology of marine organisms. We investigated the impact of ocean acidification and warming on the immune system of mussels, focusing on the regulatory mechanisms of intrinsic and extrinsic apoptosis. The study explored the effects on the immune response ability of mussels (Mytilus coruscus) after 14 and 21 days under combined conditions of different temperatures (20 °C and 30 °C) and pH (8.

View Article and Find Full Text PDF

Molecular response to CO-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses.

Mar Environ Res

January 2025

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China. Electronic address:

In order to explore the impact of CO-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pH = 7.98) or in three laboratory-controlled OA conditions (ΔpH = -0.3, -0.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Ocean acidification and its regulating factors in the East China Sea off the Yangtze River estuary.

Mar Environ Res

January 2025

Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.

This study examines the seasonal variations in carbonate system parameters in the East China Sea (ECS) off the Yangtze River estuary (YRE) and analyzes the contributions of anthropogenic CO₂ and eutrophication to acidification. Carbonate parameters data were collected during summer 2019 and combined winter 2011. During winter, acidification is primarily driven by rising atmospheric CO₂, with minimal impact from biological processes.

View Article and Find Full Text PDF

Delayed onset of ocean acidification in the Gulf of Maine.

Sci Rep

January 2025

Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.

The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!