The focal mechanical properties of normal and diseased porcine aortic valve tissue measured by a novel microindentation device.

J Mech Behav Biomed Mater

Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. Electronic address:

Published: March 2021

Cells sense and respond to the heterogeneous mechanical properties of their tissue microenvironment, with implications for the development of many diseases, including cancer, fibrosis, and aortic valve disease. Characterization of tissue mechanical heterogeneity on cellular length scales of tens of micrometers is thus important for understanding disease mechanobiology. In this study, we developed a low-cost bench-top microindentation system to readily map focal microscale soft tissue mechanical properties. The device was validated by comparison with atomic force microscopy nanoindentation of polyacrylamide gels. To demonstrate its utility, the device was used to measure the focal microscale elastic moduli of normal and diseased porcine aortic valve leaflet tissue. Consistent with previous studies, the fibrosa layer of intact leaflets was found to be 1.91-fold stiffer than the ventricularis layer, with both layers exhibiting significant heterogeneity in focal elastic moduli. For the first time, the microscale compressive moduli of focal proteoglycan-rich lesions in the fibrosa of early diseased porcine aortic valve leaflets were measured and found to be 2.44-fold softer than those of normal tissue. These data provide new insights into the tissue micromechanical environment in valvular disease and demonstrate the utility of the microindentation device for facile measurement of the focal mechanical properties of soft tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.104245DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
aortic valve
16
diseased porcine
12
porcine aortic
12
focal mechanical
8
normal diseased
8
microindentation device
8
tissue mechanical
8
focal microscale
8
demonstrate utility
8

Similar Publications

Chronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .

View Article and Find Full Text PDF

Mechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.

View Article and Find Full Text PDF

Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template.

View Article and Find Full Text PDF

Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.

View Article and Find Full Text PDF

An Open-source Python Tool for Traction Force Microscopy on Micropatterned Substrates.

Bio Protoc

January 2025

Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble, France.

Cell-generated forces play a critical role in driving and regulating complex biological processes, such as cell migration and division and cell and tissue morphogenesis in development and disease. Traction force microscopy (TFM) is an established technique developed in the field of mechanobiology used to quantify cellular forces exerted on soft substrates and internal mechanical tissue stresses. TFM measures cell-generated traction forces in 2D or 3D environments with varying mechanical and biochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!