The soil-rice system in rural and peri-urban areas of the lower Brahmaputra valley, northeast India was investigated for heavy metal(loid)s using Nemerow's pollution index (PI) and potential ecological risk index (RI). Potential health risk due to rice consumption grown in the region was assessed in terms of carcinogenic and non-carcinogenic risks. Around 95% of the soil showed acidic nature that ranged from weakly acidic to strongly acidic soil. In terms of PI, 27.3% of the sampling sites were heavily polluted (PI≥3), 34.8% moderately, and 37.9% were slightly polluted. The Pb concentration was comparably higher in 57.1% of the rice grain samples and the mean As level (0.17 mg kg) was close to the WHO limit. The non-carcinogenic risk in terms of hazard quotient (HQ) was high primarily due to As (HQ > 1), whereas other metals had limited contribution (HQ < 1). The carcinogenic risk based on total cancer risk (TCR) values for adults and children ranged between 0.0039 - 0.019 and 0.0043-0.0211, respectively, exceeding the maximum acceptable level of 1 × 10. Among the rice varieties, for non-carcinogenic risks, the maximum hazard index (HI) was noticed for Bahadur and the minimum for Ranjit. Whereas for carcinogenic risks, the maximum TCR was observed for Mahsuri and the minimum for Moynagiri.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.129150DOI Listing

Publication Analysis

Top Keywords

heavy metalloids
8
health risk
8
soil-rice system
8
system rural
8
rural peri-urban
8
peri-urban areas
8
areas lower
8
lower brahmaputra
8
brahmaputra valley
8
valley northeast
8

Similar Publications

Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).

View Article and Find Full Text PDF

Plants are increasingly exposed to stress-induced factors, including heavy metals. Zinc, although it is a microelement, at high concentrations can be phytotoxic to plants by limiting their growth and development. The presented research confirmed the inhibition effect of Zn on morphological and physiological parameters in barley plants.

View Article and Find Full Text PDF

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers.

Sci Total Environ

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.

View Article and Find Full Text PDF

Arsenic in drinking water has been associated with an increased risk of health concerns. This metalloid is ingested and distributed throughout the body, accumulating in several organs, including the testis. In this organ, arsenic disturbs steroidogenesis and spermatogenesis and affects male fertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!