Performance of UV/acetylacetone process for saline dye wastewater treatment: Kinetics and mechanism.

J Hazard Mater

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.

Published: March 2021

Futility of traditional advanced oxidation processes (AOPs) in saline wastewater treatment has stimulated the quest for novel "halotolerant" chemical oxidation technology. Acetylacetone (AA) has proven to be a potent photo-activator in the degradation of dyes, but the applicability of UV/AA for saline wastewater treatment needs to be verified. In this study, degradation of crystal violet (CV) was investigated in the UV/AA system in the presence of various concentrations of exogenic Cl or Br. The results reveal that degradation, mineralization and even accumulation of adsorbable organic halides (AOX) were not significantly affected by the addition of Cl or Br. Rates of CV degradation were enhanced by elevating either AA dosage or solution acidity. An apparent kinetic rate equation was developed as r = -d[CV]/dt = k[CV][AA] = (7.34 × 10 mM min) × [CV] [AA]. In terms of results of radical quenching experiments, direct electron/energy transfer is considered as the major reaction mechanism, while either singlet oxygen or triplet state ((AA)*) might be involved. Based on identification of degradation byproducts, a possible degradation pathway of CV in the UV/AA system is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124774DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
saline wastewater
8
uv/aa system
8
degradation
6
performance uv/acetylacetone
4
uv/acetylacetone process
4
process saline
4
saline dye
4
dye wastewater
4
treatment kinetics
4

Similar Publications

Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.

View Article and Find Full Text PDF

Algal-bacterial bioremediation of cyanide-containing wastewater in a continuous stirred photobioreactor.

World J Microbiol Biotechnol

January 2025

The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.

This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L potassium cyanide, 3 g L benzonitrile, and 1 g L sodium salicylate when incubated as 10% v/v in MSM at 30 ℃.

View Article and Find Full Text PDF

Facile Preparation of Sulfonated Polysulfone Composite Membranes with High Hydrophilicity and Visible-Light Driving Self-Cleaning Performance.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.

The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.

View Article and Find Full Text PDF

Campylobacter spp. in chicken meat from traditional markets in Peru and its impact measured through a quantitative microbiological risk assessment.

Food Res Int

January 2025

Department of Animal and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja 15021, Lima 41, Peru; Tropical and Highlands Veterinary Research Institute, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Jauja, 12150, Peru; Global Health Center, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres 15102, Lima 41, Peru. Electronic address:

Campylobacter is a major cause of foodborne gastroenteritis worldwide, with the mishandling of contaminated chicken meat among the main pathways for human infection. Granted the disease burden due to this pathogen, systematic assessments of its potential impact are necessary. The aims of this study were to evaluate both presence and load of Campylobacter in chicken meat sold in traditional markets, assess risk factors related with the infrastructure and hygienic conditions of market stalls, and evaluate control strategies for campylobacteriosis in Peru through a quantitative microbiological risk assessment (QMRA), a data-driven, systematic approach to quantitatively assess risks by integrating empirical contamination levels, microbial behavior, and consumer exposure.

View Article and Find Full Text PDF

The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!