Reduction of iron (hydr)oxide-bound arsenate: Evidence from high depth resolution sampling of a reducing aquifer in Yinchuan Plain, China.

J Hazard Mater

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Published: March 2021

Sediment in fluvial-deltaic plains with high-As groundwater is heterogenous but its characterization of As and Fe oxidation states lacks resolution, and is rarely attempted for aqueous and solid phases simultaneously. Here, we pair high-resolution (> 1 sample/meter) Fe extended fine-structure spectroscopy (EXAFS, n = 40) and As X-ray absorption near-edge spectroscopy (XANES, n = 49) with groundwater composition and metagenomics measurements for two sediment cores and their associated wells (n = 8) from the Yinchuan Plain in northwest China. At shallower depths, nitrate and Mn/Fe reducing sediment zones are fine textured, contain 9.6 ± 5.6 mg kg of As(V) and 2.3 ± 2.7 mg kg of As(III) with 9.1 ± 8.1 g kg of Fe(III) (hydr)oxides, with bacterial genera capable of As and Fe reduction identified. In four deeper 10-m sections, sulfate-reducing sediments are coarser and contain 2.6 ± 1.3 mg kg of As(V) and 1.1 ± 1.0 mg kg of As(III) with 3.2 ± 2.6 g kg of Fe(III) (hydr)oxides, even though groundwater As concentrations can exceed 200 μg/L, mostly as As(III). Super-enrichment of sediment As (42-133 mg kg, n = 7) at shallower depth is due to redox trapping during past groundwater discharge. Active As and Fe reduction is supported by the contrast between the As(III)-dominated groundwater and the As(V)-dominated sediment, and by the decreasing sediment As(V) and Fe(III) (hydr)oxides concentrations with depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937834PMC
http://dx.doi.org/10.1016/j.jhazmat.2020.124615DOI Listing

Publication Analysis

Top Keywords

feiii hydroxides
12
yinchuan plain
8
sediment
6
groundwater
5
reduction iron
4
iron hydroxide-bound
4
hydroxide-bound arsenate
4
arsenate evidence
4
evidence high
4
high depth
4

Similar Publications

The biotin-conjugated Fe(III) catecholate complex [Fe(BioL)], Fe(BioL) (BioLH=N-(3,4-dihydroxyphenethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide) is reported as targeted magnetic resonance imaging (MRI) contrast agents (CAs) to increase the payload for early-stage imaging of tumours. The high spin state and octahedral coordination of the Fe(III) complex are confirmed by EPR spectra and DFT optimized structure, respectively. The overall formation constant (log K) of Fe(BioL) is determined as 45, which is higher than the known, more stable complex [Fe(EDTA)].

View Article and Find Full Text PDF
Article Synopsis
  • Fe(III) complexes with carboxylic acids are crucial for environmental photochemistry and could be effective in advanced oxidation processes (AOPs).
  • The study presents two methods to accurately determine quantum yields for photolysis and hydroxyl (OH) radical generation from these complexes when exposed to UV light.
  • New findings establish a correlation between the quantum yields of OH generation for various Fe complexes and resolve discrepancies in previous literature, enhancing the understanding of their efficiency in environmental applications.
View Article and Find Full Text PDF

A comprehensive DFT-based study of the antioxidant properties of monolignols: Mechanism, kinetics, and influence of physiological environments.

Int J Biol Macromol

January 2025

Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria. Electronic address:

Monolignols, p-coumaryl alcohol (CouA), coniferyl alcohol (ConiA), and sinapyl alcohol (SinA), are the fundamental materials for lignin biosynthesis, a major component of lignocellulosic biomass. In the present study, we report a comprehensive analysis of the antioxidant properties of monolignols, using density functional theory (DFT) calculations. Under model physiological conditions, monolignols demonstrated a high hydroperoxyl radical scavenging capacity in polar media, with overall rate constants (k) ranging from 5.

View Article and Find Full Text PDF

Controlling iron release and pathogenic bacterial growth in distribution pipes through nanofiltration followed by different disinfection methods.

J Hazard Mater

December 2024

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

There is increasing concern about discoloration problems and microbial risks in drinking water. Until recently, how to control iron release and pathogenic bacterial growth in distribution pipes has been a knowledge gap. In our study, nanofiltration removed 13.

View Article and Find Full Text PDF

Among the reported spinel ferrites, the p-block metal containing SnFeO is scarcely explored, but it is a promising water-splitting electrocatalyst. This study focuses on the reaction kinetics and atomic scale insight of the reaction mechanism of the oxygen evolution reaction (OER) catalyzed by SnFeO and analogous FeO. The replacement of FeIIOh sites with SnIIOh in SnFeO improves the catalytic efficiency and various intrinsic parameters affecting the reaction kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!