Solid-phase denitrification (SPD) is a promising technology for nitrate-rich water purification. This study aimed to examine the variation in denitrification performance and denitrifying community under high-dose acute oxytetracycline (OTC) exposure and various biorecovery strategies. The denitrification performance was impaired significantly after one-day OTC shock at 50 mg L in a continuous-flow SPD system supported by a polycaprolactone (PCL) carrier but could rapidly recover without the addition of OTC. When 50 mg L OTC stress was applied for a longer time in the batch tests, a natural recovery period of more than 20 days was required to reach more than 95% nitrate reduction. Under the same conditions, the addition of both mature biofilm-attached PCL carrier and fresh biofilm-free PCL carrier significantly shortened the recovery time for efficient nitrate reduction, mainly due to the increase in organic availability from the PCL carriers. However, the composition of the microbial community notably changed due to the effects of OTC according to high-throughput sequencing and metagenomic analysis. Genes encoding NAR and NIR were much more sensitive than those encoding NOR and NOS to OTC shock. Tetracycline resistance gene (TRG) enrichment was 15.86% higher in the biofilm that experienced short-term OTC shock than in the control biofilm in the continuous-flow SPD system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.111763DOI Listing

Publication Analysis

Top Keywords

denitrification performance
12
otc shock
12
pcl carrier
12
performance denitrifying
8
denitrifying community
8
community high-dose
8
high-dose acute
8
acute oxytetracycline
8
exposure biorecovery
8
biorecovery strategies
8

Similar Publications

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Iron-carbon micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification treating low carbon/nitrogen mariculture wastewater.

Environ Res

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:

Considering the unsatisfied nitrogen (N) and phosphorus (P) treatment performance of mariculture wastewater caused by low carbon/nitrogen (C/N), a novel iron-carbon (Fe-C) micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification (HNAD) process was proposed to enhance the N and P elimination. Results revealed that total nitrogen (TN) removal and total phosphorus (TP) removal efficiencies in Fe-C filter with HNAD (R-Fe) increased by 76.1% and 113.

View Article and Find Full Text PDF

Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH-N removal sludge reactors mediated by various MnOx types, including δ-MnO (δ-MSR), β-MnO (β-MSR), α-MnO (α-MSR), and natural Mn ore (MOSR), investigating their NH-N removal performances and mechanisms under different initial N loading and pH conditions.

View Article and Find Full Text PDF

Simultaneous degradation of roxithromycin and nitrogen removal by Acinetobacter pittii TR1: Performances, pathways, and mechanisms.

J Environ Manage

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:

Pharmaceutical and aquaculture wastewater contains not only antibiotics but also high concentrations of nitrogen, but few studies have been conducted on bacteria that target this complex pollution for degradation. A novel heterotrophic nitrifying aerobic denitrifying (HN-AD) strain Acinetobacter pittii TR1 isolated from soil. When the C/N ratio was 20, the strain could degrade 50 mg/L roxithromycin (ROX) and the nitrogen removal rate was 96.

View Article and Find Full Text PDF

Insights into Electrochemical Nitrate Reduction to Nitrogen on Metal Catalysts for Wastewater Treatment.

Environ Sci Technol

January 2025

The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

Electrocatalytic nitrate reduction reaction (NORR) to harmless nitrogen (N) presents a viable approach for purifying NO-contaminated wastewater, yet most current electrocatalysts predominantly produce ammonium/ammonia (NH/NH) due to challenges in facilitating N-N coupling. This study focuses on identifying metal catalysts that preferentially generate N and elucidating the mechanistic origins of their high selectivity. Our evaluation of 16 commercially available metals reveals that only Pb, Sn, and In demonstrated substantial N selectivity (79.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!