Processive endoglucanases possess both endo- and exoglucanase activity, making them attractive discovery and engineering targets. Here, a processive endoglucanase EG5C-1 from Bacillus subtilis was employed as the starting point for enzyme engineering. Referring to the complex structure information of EG5C-1 and cellohexaose, the amino acid residues in the active site architecture were identified and subjected to alanine scanning mutagenesis. The residues were chosen for a saturation mutagenesis since their variants showed similar activities to EG5C-1. Variants D70Q and S235W showed increased activity towards the substrates CMC and Avicel, an increase was further enhanced in D70Q/S235W double mutant, which displayed a 2.1- and 1.7-fold improvement in the hydrolytic activity towards CMC and Avicel, respectively. In addition, kinetic measurements showed that double mutant had higher substrate affinity (K) and a significantly higher catalytic efficiency (k/K). The binding isotherms of wild-type EG5C-1 and double mutant D70Q/S235W suggested that the binding capability of EG5C-1 for the insoluble substrate was weaker than that of D70Q/S235W. Molecular dynamics simulations suggested that the collaborative substitutions of D70Q and S235W altered the hydrogen bonding network within the active site architecture and introduced new hydrogen bonds between the enzyme and cellohexaose, thus enhancing both substrate affinity and catalytic efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.12.060DOI Listing

Publication Analysis

Top Keywords

double mutant
12
processive endoglucanase
8
bacillus subtilis
8
active site
8
site architecture
8
d70q s235w
8
cmc avicel
8
substrate affinity
8
catalytic efficiency
8
eg5c-1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!