Aims: To investigate the role of cIAP2 in the malignant biological behaviours of hepatocellular carcinoma (HCC) cells and determine its mechanism of action.

Main Methods: cIAP2 protein expression was detected via immunohistochemistry (IHC) in 102 HCC specimens and 43 paracancerous liver tissues, and its relationship with clinicopathological features and patient prognosis was analysed. Then, short interfering RNA (siRNA) technology was used to knock down cIAP2 expression in BEL7402 and HepG2 cells. Cell Counting Kit-8 (CCK8) and Transwell assays were used to determine cell proliferation and invasion after knockdown of cIAP2 expression. The relationship between cIAP2 and the NF-κB pathway was explored via western blotting (WB) and a dual luciferase reporter system. Finally, nude mouse models of liver cancer were established to detect the effect of cIAP2 on tumourigenicity and the proliferation activity of orthotopic HCC cells.

Key Findings: cIAP2 expression was significantly increased in HCC tissues and was correlated with intravascular thrombosis in HCC. High cIAP2 expression was correlated with poor patient prognosis. cIAP2 knockdown significantly reduced the proliferation and invasion of BEL7402 and HepG2 cells and the activity of the NF-κB pathway. Animal experiments showed that cIAP2 knockdown reduced the tumourigenicity of HepG2 cells in the liver of nude mice and the proliferation activity of the orthotopic HCC cells.

Significance: cIAP2 plays an important role in HCC proliferation and invasion and may exert its effects via the NF-κB signalling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118867DOI Listing

Publication Analysis

Top Keywords

proliferation invasion
16
ciap2 expression
16
ciap2
12
hepg2 cells
12
ciap2 nf-κb
8
nf-κb signalling
8
cell proliferation
8
hepatocellular carcinoma
8
patient prognosis
8
bel7402 hepg2
8

Similar Publications

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Targeting KAT7 inhibits the progression of colorectal cancer.

Theranostics

January 2025

Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.

Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC.

View Article and Find Full Text PDF

Background: Chromosome segregation 1 like () overexpression can promote proliferation and migration in cancer. In previous study, we found that CSE1L expression was higher in gastric cancer (GC) tissues compared to normal tissues. However, the biological function and molecular mechanism of CSE1L in GC remains unclear.

View Article and Find Full Text PDF

Alpha-Lipoic Acid-Mediated Inhibition of LTB Synthesis Suppresses Epithelial-Mesenchymal Transition, Modulating Functional and Tumorigenic Capacities in Non-Small Cell Lung Cancer A549 Cells.

Curr Ther Res Clin Exp

November 2024

Laboratorio de Oncología Celular y Molecular. Departamento de Oncología Básico-Clínica. Facultad de Medicina. Universidad de Chile, Santiago, Chile.

Background: Leukotriene B (LTB) plays a crucial role in carcinogenesis by inducing epithelial-mesenchymal transition (EMT), a process associated with tumor progression. The synthesis of LTB is mediated by leukotriene A hydrolase (LTAH), and it binds to the receptors BLT and BLT. Dysregulation in LTB production is linked to the development of various pathologies.

View Article and Find Full Text PDF

Background: Breast cancer is a highly malignant disease worldwide, but there are currently no sufficient molecular biomarkers to predict patient prognosis and guide radiotherapy. The tumor microenvironment (TME) is an important factor affecting tumor biological function, and changes in its composition are equally relevant to tumor progression and prognosis during radiotherapy.

Methods: Here, we performed bioinformatic analyses using data obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases to screen for molecular biomarkers related to the TME that may influence radiotherapy sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!