Remotely sensed land cover datasets have been increasingly employed in studies of wildlife habitat use. However, meaningful interpretation of these datasets is dependent on how accurately they estimate habitat features that are important to wildlife. We evaluated the accuracy of the GAP dataset, which is commonly used to classify broad cover categories (e.g., vegetation communities) and LANDFIRE datasets, which classifies narrower cover categories (e.g., plant species) and structural features of vegetation. To evaluate accuracy, we compared classification of cover types and estimates of percent cover and height of sagebrush (Artemisia spp.) derived from GAP and LANDFIRE datasets to field-collected data in winter habitats used by greater sage-grouse (Centrocercus urophasianus). Accuracy was dependent on the type of dataset used as well as the spatial scale (point, 500-m, and 1-km) and biological level (community versus dominant species) investigated. GAP datasets had the highest overall classification accuracy of broad sagebrush cover types (49.8%) compared to LANDFIRE datasets for narrower cover types (39.1% community-level; 31.9% species-level). Percent cover and height were not accurately estimated in the LANDFIRE dataset. Our results suggest that researchers must be cautious when applying GAP or LANDFIRE datasets to classify narrow categories of land cover types or to predict percent cover or height of sagebrush within sagebrush-dominated landscapes. We conclude that ground-truthing is critical for successful application of land cover datasets in landscape-scale evaluations and management planning, particularly when wildlife use relatively rare habitat types compared to what is available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111720 | DOI Listing |
Sensors (Basel)
January 2025
School of Information Engineering, China University of Geosciences, Beijing 100083, China.
Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Departamento de Geografía, Facultad de Ciencias, Universidad de la República, Montevideo 4225, Uruguay.
Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Macao Polytechnic University, Macao 999078, China.
The accurate segmentation of land cover in high-resolution remote sensing imagery is crucial for applications such as urban planning, environmental monitoring, and disaster management. However, traditional convolutional neural networks (CNNs) struggle to balance fine-grained local detail with large-scale contextual information. To tackle these challenges, we combine large-kernel convolutions, attention mechanisms, and multi-scale feature fusion to form a novel LKAFFNet framework that introduces the following three key modules: LkResNet, which enhances feature extraction through parameterizable large-kernel convolutions; Large-Kernel Attention Aggregation (LKAA), integrating spatial and channel attention; and Channel Difference Features Shift Fusion (CDFSF), which enables efficient multi-scale feature fusion.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Geography & Environmental Studies, Arba-Minch University, Arba Minch City, Ethiopia.
Understanding land use/land cover (LULC) changes is crucial for informing policymakers and planners on the dynamics affecting environmental and resource management. Most past studies highlighted the significance of LULC changes and their driving forces in various locations. However, comprehensive analyses that combine the impact of land management technologies (LMTs) on LULC changes using GIS and remote sensing tools have not been widely addressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!