The environment temperature and its effect on the temperature of silage is very important for the fermentation and subsequent quality of a silage. Obligate heterofermentative lactic acid bacteria (LAB) inocula, because of their ability to inhibit yeasts, have been developed to prevent the aerobic deterioration of silages. The temperature during silage conservation may also play an important role in the fermentation profile of silages. This study has evaluated the effect of temperature, during the conservation of whole crop corn silage, untreated or treated with different LAB inocula, on the fermentation profile and on the aerobic stability of the silage. Corn was harvested at 42% dry matter and either not treated (control) or treated with Lactobacillus buchneri NCIMB 40788 (LB) at 300,000 cfu/g fresh matter (FM); Lactobacillus hilgardii CNCM I-4785 at 150,000 cfu/g FM (LH); L. hilgardii CNCM I-4785 at 300,000 cfu/g FM (LH); or LB+LH at 150,000 cfu/g FM each. In an attempt to experimentally simulate temperature fluctuations in the mass or at the periphery of a silage bunker, corn was conserved in laboratory silos at a constant temperature (20 ± 1°C; MASS) or at lower and variable outdoor temperatures (PERIPH; ranging from 0.5 to 19°C), and the silos were opened after 15, 30, and 100 d of conservation. Lactic acid, acetic acid, and ethanol contents increased in all the silages over the conservation period. The lactic acid content was higher (+10%) in the silages kept at a constant temperature than those conserved at the lower and variable outdoor temperatures. The acetic acid was higher in the treated silages than in the control ones conserved at a constant temperature for 100 d. Moreover, 1,2-propanediol was only detected in the treated silages after at least 30 d at a constant temperature, whereas only traces were detected in the LB+LH treatment for the other temperature conditions. The yeast count decreased during conservation at a slower rate in PERIPH than in MASS and on average reached 2.96 and 4.71 log cfu/g for MASS and PERIPH, respectively, after 100 d of conservation. The highest aerobic stability values were observed for LH (191 h) in the MASS silage after 100 d of conservation, whereas the highest aerobic stability was observed in LB+LH (150 h) in the PERIPH silages. After 7 d of air exposure, a pH higher than 4.5 and a higher yeast than 8.0 log cfu/g were detected in all the silages opened after 15 and 30 d of conservation. A pH value close to that of silo opening was detected in the LB, LH, and LH silages conserved under MASS conditions after 100 d, whereas LB+LH was the most effective under PERIPH conditions. The temperature and its fluctuation during conservation of silage in laboratory silos influenced the fermentation, which in turn had an effect on the quality of silage and on the extent of the effect of LAB inocula.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2020-18733DOI Listing

Publication Analysis

Top Keywords

aerobic stability
16
constant temperature
16
temperature
12
laboratory silos
12
fermentation profile
12
lactic acid
12
lab inocula
12
100 conservation
12
silage
10
silages
9

Similar Publications

Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions.

J Hazard Mater

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The losses of reactive gaseous nitrogen (N), including ammonia (NH) and nitrous oxide (NO), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH and NO fluxes, compost properties and bacterial communities.

View Article and Find Full Text PDF

Introduction: This study aimed to compare the effects of structured sports games (SG) and psychomotricity activities (PCM) on the locomotor, stability, and manipulative motor competencies of preschool children.

Methods: A randomized controlled trial was conducted over an 8-week period, involving two experimental groups (SG, = 30 and PCM, = 30) and one control group (CG, = 28), with participants attending two intervention sessions per week. A total of 88 5-year-old children participated in the experiment (boys = 48; girls = 40).

View Article and Find Full Text PDF

Introduction: This systematic review and meta-analysis aimed to systematically assess the effect size of conservative methods based on exercise for respondents with idiopathic scoliosis.

Methods: This study was developed in accordance with the PRISMA guidelines. The PubMed, Cochrane Library, Web of Science, and Google Scholar databases were searched in May 2023.

View Article and Find Full Text PDF

Background: Long-term endurance training is associated with structural, functional, and biochemical markers of cardiac dysfunction in highly trained athletes. Many studies have focused on structural changes in the right ventricle (RV) and few have examined functional adaptation of the right ventricle. This meta-analysis aims to compare the changes in right ventricular systolic function between endurance athletes and controls before and after exercise using speckle tracking echocardiography (STE).

View Article and Find Full Text PDF

Computational insights into the aggregation mechanism of human calcitonin.

Int J Biol Macromol

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:

Human calcitonin (hCT) is a peptide hormone that regulates calcium homeostasis, but its abnormal aggregation can disrupt physiological functions and increase the risk of medullary thyroid carcinoma. To elucidate the mechanisms underlying hCT aggregation, we investigated the self-assembly dynamics of hCT segments (hCT, hCT, and hCT) and the folding and dimerization of full-length hCT through microsecond atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that hCT and hCT predominantly existed as isolated monomers with transient small-sized oligomers, indicating weak aggregation tendencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!