The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pt.2020.11.005 | DOI Listing |
Curr Top Membr
October 2024
Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil. Electronic address:
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment.
View Article and Find Full Text PDFRes Sq
September 2024
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Life Sci Alliance
October 2024
Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle.
View Article and Find Full Text PDFDoublet microtubules (DMTs) are flagellar components required for the protist ( ) to swim through the human genitourinary tract to cause trichomoniasis, the most common non-viral sexually transmitted disease. Lack of DMT structures has prevented structure-guided drug design to manage infection. Here, we determined the cryo-EM structure of native DMTs, identifying 29 unique proteins, including 18 microtubule inner proteins and 9 microtubule outer proteins.
View Article and Find Full Text PDFMicrosc Microanal
July 2024
Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India.
Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!