Recent developments in natural products for white adipose tissue browning.

Chin J Nat Med

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China. Electronic address:

Published: November 2020

Excess accumulation of white adipose tissue (WAT) causes obesity which is an imbalance between energy intake and energy expenditure. Obesity is a serious concern because it has been the leading causes of death worldwide, including diabetes, stroke, heart disease and cancer. Therefore, uncovering the mechanism of obesity and discovering anti-obesity drugs are crucial to prevent obesity and its complications. Browning, inducing white adipose tissue to brown or beige (brite) fat which is brown-like fat emerging in WAT, becomes an appealing therapeutic strategy for obesity and metabolic disorders. Due to lack of efficacy or intolerable side-effects, the clinical trials that promote brown adipose tissue (BAT) thermogenesis and browning of WAT have not been successful in humans. Obviously, more specific means still need to be developed to activate browning of white adipose tissue. In this review, we summarized seven kinds of natural products (alkaloids, flavonoids, terpenoids, long chain fatty acids, phenolic acids, else and extract) promoting white adipose tissue browning which can ameliorate the metabolic disorders, including obesity, dislipidemia, insulin resistance and diabetes. Since natural products are important drug sources and the browning property plays a significant role in not only obesity treatment but also in type 2 diabetes (T2DM) improvement, natural products of inducing browning may be an irreplaceable drug discovery orientation for obesity, diabetes and even other metabolic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(20)60021-8DOI Listing

Publication Analysis

Top Keywords

adipose tissue
24
white adipose
20
natural products
16
metabolic disorders
12
tissue browning
8
obesity
8
browning
7
adipose
6
tissue
6
white
5

Similar Publications

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!