Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses.

BMC Microbiol

Faculty of Bioscience Engineering, Department of Microbial and Molecular Systems (M2S), Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Leuven, Belgium.

Published: December 2020

Background: Environmental biofilms can induce attachment and protection of other microorganisms including pathogens, but can also prevent them from invasion and colonization. This opens the possibility for so-called biocontrol strategies, wherein microorganisms are applied to control the presence of other microbes. The potential for both positive and negative interactions between microbes, however, raises the need for in depth characterization of the sociobiology of candidate biocontrol agents (BCAs). The inside of the drinking water system (DWS) of broiler houses is an interesting niche to apply BCAs, because contamination of these systems with pathogens plays an important role in the infection of broiler chickens and consequently humans. In this study, Pseudomonas putida, which is part of the natural microbiota in the DWS of broiler houses, was evaluated as BCA against the broiler pathogen Salmonella Java.

Results: To study the interaction between these species, an in vitro model was developed simulating biofilm formation in the drinking water system of broilers. Dual-species biofilms of P. putida strains P1, P2, and P3 with S. Java were characterized by competitive interactions, independent of P. putida strain, S. Java inoculum density and application order. When equal inocula of S. Java and P. putida strains P1 or P3 were simultaneously applied, the interaction was characterized by mutual inhibition, whereas P. putida strain P2 showed an exploitation of S. Java. Lowering the inoculum density of S. Java changed the interaction with P. putida strain P3 also into an exploitation of S. Java. A further increase in S. Java inhibition was established by P. putida strain P3 forming a mature biofilm before applying S. Java.

Conclusions: This study provides the first results showing the potential of P. putida as BCA against S. Java in the broiler environment. Future work should include more complex microbial communities residing in the DWS, additional Salmonella strains as well as chemicals typically used to clean and disinfect the system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731557PMC
http://dx.doi.org/10.1186/s12866-020-02046-5DOI Listing

Publication Analysis

Top Keywords

putida strain
16
drinking water
12
water system
12
broiler houses
12
java
9
pseudomonas putida
8
biofilm formation
8
formation drinking
8
dws broiler
8
putida
8

Similar Publications

Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.

View Article and Find Full Text PDF

Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by A-3.

J Agric Food Chem

January 2025

Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.

The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain A-3 was isolated for the first time which can degrade DIF efficiently.

View Article and Find Full Text PDF

Background: As our understanding of gut microbiota's metabolic impacts on health grows, the interest in engineered probiotics has intensified. This study aimed to engineer the probiotic Escherichia coli Nissle 1917 (EcN) to produce indoleacetic acid (IAA) in response to gut inflammatory biomarkers thiosulfate and nitrate.

Results: Genetic circuits were developed to initiate IAA synthesis upon detecting inflammatory signals, optimizing a heterologous IAA biosynthetic pathway, and incorporating a RiboJ insulator to enhance IAA production.

View Article and Find Full Text PDF

Increased soluble salts in soil and irrigation water threaten the sustainability of crops. This causes food insecurity directly by reducing the staple crop yield and indirectly by limiting fodder and forage production. Recently, plant-growth-promoting rhizosphere microorganism utilization improved crop productivity under stress.

View Article and Find Full Text PDF

Background: In biomanufacturing of surface-active agents, such as rhamnolipids, excessive foaming is a significant obstacle for the development of high-performing bioprocesses. The exploitation of the inherent tolerance of Pseudomonas putida KT2440, an obligate aerobic bacterium, to microaerobic conditions has received little attention so far. Here low-oxygen inducible promoters were characterized in biosensor strains and exploited for process control under reduction of foam formation by low aeration and stirring rates during biosynthesis of rhamnolipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!