A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Numerical study of hemodynamics in a complete coronary bypass with venous and arterial grafts and different degrees of stenosis. | LitMetric

Cardiovascular diseases are among the leading causes of death in the world. The coronary blockage is one of most common types of these diseases that in the majority of cases has been treated by bypass surgery. In the bypass surgery, a graft is implemented to alter the blocked coronary and allow the blood supply process. The hemodynamic characteristics of the bypass strongly depend on the geometry and mechanical properties of the graft. In the present study, the fluid-structure interaction (FSI) analysis is conducted to investigate the bypass performance for a thoracic artery as well as a saphenous vein graft. Blood flow introduces a pressure on the walls of the graft which behaves as a hyperelastic material. A complete coronary bypass with stenosis degrees of 70% and 100% is modeled. To consider the nonlinear stress-strain behavior of the grafts, a five parameter Mooney-Rivlin hyperplastic model is implemented for the structural analysis and blood is assumed to behave as a Newtonian fluid. The simulations are performed for a structured grid to solve the governing equations using finite element method (FEM). The results show that wall shear stress (WSS) for saphenous vein is larger than that of thoracic artery while the total deformation of the thoracic artery is larger compared to the saphenous vein. Also, for the venous grafts or lower stenosis degree, the oscillatory shear index (OSI) is higher at both left and right anastomoses meaning that venous grafts as well as lower degree of stenosis are more critical in terms of restenosis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2020.1857744DOI Listing

Publication Analysis

Top Keywords

thoracic artery
12
saphenous vein
12
complete coronary
8
coronary bypass
8
bypass surgery
8
venous grafts
8
bypass
6
numerical study
4
study hemodynamics
4
hemodynamics complete
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!