A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbon-Coated Tungsten Oxide Nanospheres Triggering Flexible Electron Transfer for Efficient Electrocatalytic Oxidation of Water and Glucose. | LitMetric

Carbon-Coated Tungsten Oxide Nanospheres Triggering Flexible Electron Transfer for Efficient Electrocatalytic Oxidation of Water and Glucose.

ACS Appl Mater Interfaces

Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Published: December 2020

Electrocatalytic oxidation of water (, oxygen evolution reaction, OER) plays crucial roles in energy, environment, and biomedicine. It is a key factor affecting the efficiencies of electrocatalytic reactions conducted in aqueous solution, , electrocatalytic water splitting and glucose oxidation reaction (GOR). However, electrocatalytic OER still suffers from problems like high overpotential, sluggish kinetics, and over-reliance on expensive noble-metal-based catalysts. Herein, 15 nm thick carbon-based shell coated tungsten oxide (CTO) nanospheres are loaded on nickel foam to form CTO/NF. An enhanced electrocatalytic OER is triggered on CTO/NF, with the overpotential at 50 mA cm (317 mV) and the Tafel slope (70 mV dec) on CTO/NF lower than those on pure tungsten oxide (360 mV, 117 mV dec) and noble-metal-based IrO catalysts (328 mV, 96 mV dec). A promoted electrocatalytic GOR is also achieved on CTO/NF, with efficiency as high as 189 μA mM cm. The carbon-based shell on CTO is flexible for electron transfer between catalyst and reactants and provides catalytically active sites. This improves reactant adsorption and O-H bond dissociation on the catalyst, which are key steps in OER and GOR. The carbon-based shell on CTO retains the catalyst as nanospheres with a higher surface area, which facilitates OER and GOR. It is the multiple roles of the carbon-based shell that increases the electrocatalytic efficiency. These results are helpful for fabricating more efficient noble-metal-free electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c13547DOI Listing

Publication Analysis

Top Keywords

carbon-based shell
16
tungsten oxide
12
flexible electron
8
electron transfer
8
electrocatalytic
8
electrocatalytic oxidation
8
oxidation water
8
electrocatalytic oer
8
shell cto
8
oer gor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!