AI Article Synopsis

  • - Whole-body magnetic resonance imaging (WB-MRI) is becoming a valuable tool in detecting and staging malignant tumors, especially in the musculoskeletal system.
  • - WB-MRI is effective in accurately identifying and measuring disease burdens across various types of cancers, with emerging guidelines advocating its clinical use.
  • - This review highlights the advantages and limitations of WB-MRI compared to other imaging technologies, emphasizing its role in assessing both skeletal and soft tissue cancers.

Article Abstract

Whole-body magnetic resonance imaging (WB-MRI) is gradually being integrated into clinical pathways for the detection, characterization, and staging of malignant tumors including those arising in the musculoskeletal (MSK) system. Although further developments and research are needed, it is now recognized that WB-MRI enables reliable, sensitive, and specific detection and quantification of disease burden, with clinical applications for a variety of disease types and a particular application for skeletal involvement. Advances in imaging techniques now allow the reliable incorporation of WB-MRI into clinical pathways, and guidelines recommending its use are emerging. This review assesses the benefits, clinical applications, limitations, and future capabilities of WB-MRI in the context of other next-generation imaging modalities, as a qualitative and quantitative tool for the detection and characterization of skeletal and soft tissue MSK malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0040-1719018DOI Listing

Publication Analysis

Top Keywords

detection characterization
12
whole-body magnetic
8
magnetic resonance
8
resonance imaging
8
clinical pathways
8
clinical applications
8
detection
4
characterization musculoskeletal
4
musculoskeletal cancer
4
cancer whole-body
4

Similar Publications

Genomic data on from the African continent are currently lacking, resulting in the region being under-represented in global analyses of infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare isolates from diarrhoeic human patients (=142), livestock (=38), poultry manure (=5) and dogs (=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global population. In addition, selected isolates were tested for antimicrobial susceptibility (=33) and characterized by PCR ribotyping (=53).

View Article and Find Full Text PDF

Proximity-Induced Superconductivity in Ferromagnetic FeGeTe and Josephson Tunneling through a van der Waals Heterojunction.

ACS Nano

January 2025

International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.

Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.

View Article and Find Full Text PDF

Genetic diversity and selection signatures in sheep breeds.

J Appl Genet

January 2025

Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil.

Natural and artificial selection in domesticated animals can cause specific changes in genomic regions known as selection signatures. Our study used the integrated haplotype score (iHS) and Tajima's D tests within non-overlapping windows of 100 kb to identify selection signatures, in addition to genetic diversity and linkage disequilibrium estimates in 9498 sheep from breeds in Ireland (Belclare, Charollais, Suffolk, Texel, and Vendeen). The mean observed and expected heterozygosity for all the sheep breeds were 0.

View Article and Find Full Text PDF

Nanoparticles-Based Optical Chemosensors for Lead Acetate Sensing in Water: ZnO, ZnCeO, and ZnNdO.

J Fluoresc

January 2025

Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza, Egypt.

This study reports the synthesis, characterization, and optical properties of ZnO, ZnCeO, and ZnNdO nanoparticles and their interactions with lead acetate solutions. X-ray diffraction (XRD) confirmed that the nanoparticles were synthesized in a single-phase hexagonal structure, with crystallite sizes of 12.48 nm, 50.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV)-related hemophagocytic lymphohistiocytosis (EBV-HLH) and infectious mononucleosis (IM) are characterized by fever, hepatomegaly, and splenomegaly, but HLH has a 50% lethality rate. Therefore, this study aimed to compare the laboratory findings in differentiating EBV-HLH children from IM children who have fever, hepatomegaly, or splenomegaly. A total of 131 IM patients and 29 EBV-HLH pediatric patients with fever, hepatomegaly, or splenomegaly were enrolled in our study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!